How Simple Can A Superhet Be

If you cultivate an interest in building radios it’s likely that you’ll at some point make a simple receiver. Perhaps a regenerative receiver, or maybe a direct conversion design, it’ll take a couple of transistors or maybe some simple building-block analogue ICs. More complex designs for analogue radios require far more devices; if you’re embarking on a superhetrodyne receiver in which an oscillator and mixer are used to generate an intermediate frequency then you know it’ll be a hefty project. [VK3YE] is here to explode that assumption, with a working AM broadcast band superhet that uses only two transistors.

The circuit diagram of the radio
It doesn’t get much simpler than this.

A modern portable radio will almost certainly use an all-in-one SDR-based chip, but in the golden age of the transistor radio the first stage of the receiver would be a single transistor that was simultaneously RF amplifier, oscillator, and mixer. The circuit in the video below does this , with a ferrite rod, the familiar red-cored oscillator coil, and a yellow-cored IF transformer filtering out the 455 kHz mixer product between oscillator and signal.

There would normally follow at least one more transistor amplifying the 455 kHz signal, but instead the next device is both a detector and an audio amplifier. Back in the day that would have been a germanium point contact diode, but now the transistor has a pair of 1N4148s in its biasing. We’re guessing this applies a DC bias to counteract the relatively high forward voltage of a silicon diode, but we could be wrong.

We like this radio for its unexpected simplicity and clever design, but also because he’s built it spiderweb-style. We never expected to see a superhet this simple, and even if you have no desire to build a radio we hope you’ll appreciate the ingenuity of using simple transistors to the max.

Continue reading “How Simple Can A Superhet Be”

A Superheterodyne Receiver With A 74xx Twist

In a world with software-defined radios and single-chip receivers, a superheterodyne shortwave radio might not exactly score high on the pizzazz scale. After all, people have been mixing, filtering, and demodulating RF signals for more than a century now, and the circuits that do the job best are pretty well characterized. But building the same receiver using none of the traditional superhet trappings? Now that’s something new.

In what [Micha] half-jokingly calls a “74xx-Defined Radio”, easily obtained discrete logic chips, along with some op-amps and a handful of simple components, take the place of the tuned LC circuits and ganged variable capacitors that grace a typical superhet receiver. [Micha] started by building an RF mixer out of a 74HC4051 analog multiplexer, which with the help of a 2N3904 phase splitter forms a switching mixer. The local oscillator relies on the voltage-controlled oscillator (VCO) in a 74HC4046 PLL, a chip that we’ve seen before in [Elliot Williams]’ excellent “Logic Noise” series. The IF filter is a simple op-amp bandpass filter; the demodulator features an op-amp too, set up as an active half-wave rectifier. No coils to wind, no capacitors to tune, no diodes with mysterious properties — and judging by the video below, it works pretty well.

It may not be the most conventional way to tune in the shortwave bands, but we always love the results of projects that are artificially constrained like this one. Hats off to [Micha] for the interesting trip down the design road less travelled.

Continue reading “A Superheterodyne Receiver With A 74xx Twist”

Teardown: Cobra XRS 9740 Radar Detector

Drivers with a lead foot more often than not have Waze open on their phone so they can see if other drivers have spotted cops up ahead. But avoiding a speeding ticket used to involve a lot more hardware than software. Back before the smartphone revolution, that same driver would have had a radar detector on their dashboard. That’s not to say the gadgets are completely unused today, but between their relatively high cost (one of the top rated models on Amazon as of this writing costs over $300) and the inevitable false positives from so many vehicles on the road having their own radar and LIDAR systems, they’ve certainly become a less common sight over the years

The subject of today’s teardown is a perfect example of “Peak Radar Detector”. Manufactured back in 2007, the Cobra XRS 9740 would have been a fairly mid-range entry offering the sort of features that would have been desirable at the time. Over a decade ago, having an alphanumeric display, voice alerts, and a digital compass were all things worth shouting about on the box the thing was sold in. Though looking like some kind of Cardassian warship was apparently just an added bonus.

As the name implies these devices are primarily for detecting radar activity, but by this point they’d also been expanded to pick up infrared lasers and the strobe beacons on emergency vehicles. But false positives were always a problem, so the device allows the user to select which signals it should be on the lookout for. If you were getting some kind of interference that convinced the detector it was being bombarded with IR lasers, you could just turn that function off without having to pull the plug entirely.

But it’s important to remember that this device was built back when people were still unironically carrying around flip phones. Detecting laser and multi-band radars might sound like something pulled from the spec sheet of a stealth fighter jet, but this is still a piece of consumer electronics from more than a decade in the past. So let’s crack it open and take a look at what goes on inside a radar detector that’s only a few years away from being old enough to get its own driver’s license.

Continue reading “Teardown: Cobra XRS 9740 Radar Detector”

Superheterodyne Radios Explained

The general public thinks there is one thing called a radio. Sure, they know there are radios that pick up different channels, but other than that, one radio is pretty much like the other. But if you are involved in electronics, you probably know there are lots of ways a radio can work internally. A crystal set is very different from an FM stereo, and that’s different still from a communications receiver. We’d say there are several common architectures for receivers and one of the most common is the superheterodyne. But what does that mean exactly? [Technology Connection] has a casual explanation video that discusses how a superhet works and why it is important. You can see the video, below.

Engineering has always been about building on abstractions. This is especially true now when you can get an IC or module that does most of what you want it to do. But even without those, you would hardly start an electronics project by mining copper wire, refining it, and drawing your own wire. You probably don’t make many of your own resistors and capacitors, neither do you start your design at the fundamental electronic equations. But there’s one abstraction we often forget about: architecture. If you are designing a receiver, you probably don’t try to solve the problem of radio reception; instead you pick an architecture that is proven and design to that.

Continue reading “Superheterodyne Radios Explained”

Speaking The Same Language As A Wireless Thermometer

Temperature is a delicate thing. Our bodies have acclimated to a tight comfort band, so it is no wonder that we want to measure and control it accurately. Plus, heating and cooling are expensive. Measuring a single point in a dwelling may not be enough, especially if there are multiple controlled environments like a terrarium, pet enclosure, food storage, or just the garage in case the car needs to warm up. [Tim Leland] wanted to monitor commercially available sensors in several rooms of his house to track and send alerts.

The sensors of choice in this project are weather resistant and linked in his project page. Instead of connecting them to a black box, they are linked to a Raspberry Pi so your elaborate home automation schemes can commence. [Tim] learned how to speak the thermometer’s language from [Ray] who posted about it a few years ago.

The system worked well, but range from the receiver was only 10 feet. Thanks to some suggestions from his comments section, [Tim] switched the original 433MHz receiver for a superheterodyne version. Now the sensors can be a hundred feet from the hub. The upgraded receiver is also linked on his page.

We’ve delved into thermocouple reading recently, and we’ve featured [Tim Leland] and his 433MHz radios before.

Hacking When It Counts: POW Canteen Radios

Of all the horrors visited upon a warrior, being captured by the enemy might count as the worst. With death in combat, the suffering is over, but with internment in a POW camp, untold agonies may await. Tales of torture, starvation, enslavement and indoctrination attend the history of every nation’s prison camps to some degree, even in the recent past with the supposedly civilizing influence of the Hague and Geneva Conventions.

But even the most humanely treated POWs universally suffer from one thing: lack of information. To not know how the war is progressing in your absence is a form of torture in itself, and POWs do whatever they can to get information. Starting in World War II, imprisoned soldiers and sailors familiar with the new field of electronics began using whatever materials they could scrounge and the abundance of time available to them to hack together solutions to the fundamental question, “How goes the war?” This is the story of the life-saving radios some POWs managed to hack together under seemingly impossible conditions.

Continue reading “Hacking When It Counts: POW Canteen Radios”

Radio Receiver Build Log And More

At Hackaday, we like to see build logs, and over on Hackaday.io, you can find plenty of them. Sometimes, though, a builder really outdoes themselves with a lot of great detail on a project, and [N6QW’s] Simple-Ceiver project certainly falls into that category. The project logs document many different stages of completeness, and we linked the first one for you as a starting point, but you’ll definitely want to read up to the present. (There were 16 parts, some spanning multiple posts, last time we checked).

It is definitely worth the effort though. The project started out as a direct conversion receiver, but the design goes through and converts it into a superheterodyne receiver. Along the way, [N6QW] shares construction techniques, design advice, and even simulation plots (backed up with actual scope measurements). The local oscillator, of course, uses an Arduino and an AD9850 synthesizer.

Continue reading “Radio Receiver Build Log And More”