Coke Can Fueled Power Generator

[Experimental Fun] shows us how you can create a cola power generator that runs on nothing more than cans of cola including the container and a little bit of sodium hydroxide to speed the reaction up.

This might sound a bit crazy, but it seems you can power an engine on little more than your favorite fizzy drink and the cut-up remains of an aluminum can. What happens is that aluminum and water create a chemical reaction when mixed together, which gives off hydrogen. Normally this reaction is very slow and would take years to make any noticeable marking on the aluminum, but with a little help from sodium hydroxide the reaction is sped up to such a rate that hydrogen is produced quite quickly.

The crazy contraption they created has a reaction chamber which then feeds the hydrogen through condenser then to a bubble filter made from a bottle filled with water. After that it is on through a carbon filter to get rid of any impurities, and finally it is fed directly into a two-stroke engine’s fuel line. Then engine still needs an electric start from a battery, but after that it runs directly on the hydrogen created during the reaction from the chamber.

This is quite a cool project, however you could replace the fizzy drink with water and still get the desired effect. Since the drink comes with the aluminum cans it seems like quite a good fuel though. There are other crazy fuels out the for the avid DIY hacker, but just be careful and don’t blow yourself up.

Continue reading “Coke Can Fueled Power Generator”

Easy Free Piston Stirling Engine

Stirling engines are really cool machines, invented by Reverend Dr. Robert Stirling in 1816 to rival the steam engine, they are one of the most efficient engines ever conceived.  Building one is a very rewarding experience, but it has a certain level of difficulty. However, [Attila Blade]’s version of a free-piston type Stirling engine is simple enough to be built in a matter of minutes.

To build the engine you only need a test tube, steel wool, a latex glove, an O ring and some wire. The construction is straightforward as you can see in the video. The whole engine rocks on the wire frame which also makes it different to most other Stirling engines that you can watch on the net. The free piston is just one type of several possible configurations for a Stirling. The most common one, is the beta type, usually made with soda cans, but it is much more difficult to build than [Attila Blade]’s engine.

This is definitely a fun project that you may want to try, and is also a great way to learn  thermodynamics concepts. Even if you don’t build this particular version, there are many other possibilities using mainly household items, or you can also check the very interesting history behind the Stirling engine.


Tiny Electric Motor Runs on Power from an LED

If you were not aware, LEDs can also work in reverse: they deliver tiny amounts of current, in the microamp range, when illuminated. If you look on YouTube you can find several videos of solar panels built with arrays of LEDs, but powering an electric motor with a single 3 mm LED is something that we’ve never seen before. [Slider2732] built a small electric motor that happily runs from a green LED in sunlight.

The motor uses four coils of 1,000 ohms each. Using coils with many turns of very fine wire helps to draw less current while keeping an appropriate magnetic field for the motor to run. To keep friction at a minimum, the rotor uses a needle that hangs from a magnet. Four neodymium magnets around the rotor are periodically pushed by the coils, generating rotation. A simple two-transistor circuit takes care of the synchronization and yes, the motor does run on the four microamps provided by the LED, and runs pretty well.

Building motors is definitely an enjoyable activity, these small pulse motors can be built in just a couple of hours. You can use coils with just a few tens of turns which are much more easy to make but of course you will need something more than four microamps! The nice part of making an ultralow current motor like this is that it can run for a very long time on a tiny battery or even a capacitor, we invite you to try building one.

Continue reading “Tiny Electric Motor Runs on Power from an LED”

3D Printed Engine Chugs Away on Balloon Power

So often, 3D printer owners buy their machines with the promise of freeing themselves from the shackles of commercial manufactured items, and making all sorts of wonderful and useful things to improve their lives. Then they proceed to print a menagerie of good luck cats and toy elephants, that little tugboat, and a host of other pretty but ultimately useless items in garishly colored filament.

Perhaps this is an unfair assessment, but if you have the sneaking feeling that it might just describe you then could we point you at something that while it still has little use is at least interesting to play with. [Gzumwalt]’s single cylinder air engine is as its name suggests, a piston engine that runs on compressed air. You don’t need a shop compressor though, your lungs or an inflated balloon will suffice.

It’s a simple enough design, but it does incorporate two connecting rods, one of which drives a sliding valve. All the files are available for download, and there is a video we’ve placed below the break showing it chugging away nicely from a balloon. It might not be the most useful of engines and it may not bring you good luck, but it beats a plastic menagerie in the interest stakes.

Continue reading “3D Printed Engine Chugs Away on Balloon Power”

Cordless Drill Uses no Electricity

There are few projects on how to make your own cordless drill, but what sets [Johnnyq90’s] amazing project apart is the fact that his power plant is a nitro engine. Not an easy task of course, but he makes it look easier than it is, and we really enjoyed the construction process.

He uses an RC Kyosho GX12 engine that was previously modified, changing the cooling head with a larger one. The engine drives a gearbox that was taken from another drill. All other parts were hand made. The clutch was carefully machined, and the cooling fan was made in a 3D printer. Other necessary parts were the frame, brass spacers to adjust the engine height and alignment, throttle arm and handle. In the end even the gearbox had to be modified for higher speed. The finished drill sure looks and sounds terrific, and seems to be perfectly capable of doing its job.

As with other mechanical projects from [Johnnyq90], the video has good timing and attention to detail. His channel is definitely worth a visit, specially if you like turbines.

Thermoacoustic Engine has Only One Moving Part

Modern internal combustion engines have around 500 parts, with many of them moving in concert with the piston. But have you seen an engine with only one moving part, out of four in total? In the thermoacoustic engine, the power piston is the only part in motion. [YTEngineer] has built a very simple prototype that works on power provided by a tealight.

His little engine, slightly larger than a cigarette lighter, is composed of a test tube that serves as the cylinder, a smaller tube, called the choke, that fits inside the test tube, the stack, which is nothing more than some steel wool, and the power piston. [YTEnginer] nicely explains how the engine works: basically a temperature difference is used to induce high-amplitude sound waves that create the piston’s back-and-forth movement. The engine can be easily converted to an electricity generator by adding a magnet to the piston and a coil surrounding it.

The thermoacoustic engine is a particular type of Stirling engine. They have been proposed as electricity generators for space travel using radioisotopes as the heat source, among other applications. You may be interested in the history of Stirling engines, or perhaps even build a simple one.

Continue reading “Thermoacoustic Engine has Only One Moving Part”

200 Years of The Stirling Engine

In the early years of the nineteenth century, steam engines were at work in a variety of practical uses. However, they were still imperfect in many ways. One particular problem were the boilers, that had a tendency to explode, causing injuries and fatalities. Reverend Dr. Robert Stirling, a Scottish clergyman, was concerned about the death toll from exploding boilers. Based on previous work by George Cayley (known for his pioneering work on aeronautics), Stirling filed his patent for a safer engine in 1816. That makes this year the bicentenary of this engine. The Stirling engine has the highest theoretical efficiency of any thermal engine. It is also a relatively simple machine. Unlike other types of engines, there are no valves, and that makes the mechanical design much simpler.

Continue reading “200 Years of The Stirling Engine”