The DIY Open Crank Engine Moped

Anyone can strap a two-stroke engine on a bicycle to create a moped. But [robinhooodvsyou] has created something infinitely more awesome. He’s built an inverted open crank engine on a 10 speed bicycle. (YouTube link)  As the name implies, the engine has no crankcase. The crankshaft, camshaft, and just about everything not in the combustion chamber hangs out in the open where it can be seen and appreciated.

[robinhooodvsyou] started with an air-cooled Volkswagen cylinder. He filled the jug with a piston from a diesel car. Camshaft, flywheel, valves, and magneto are courtesy of an old Briggs and Stratton engine. The cylinder head, crankshaft, pushrods, and the engine frame itself are all homemade.

Being an open crank engine, lubrication is an issue. The crankshaft’s ball bearing is lubricated by some thick oil in a gravity fed cup. Even though the engine is a four-stroke,[robinhooodvsyou] adds some oil to the gas to keep the rings happy. The camshaft and connecting rod use Babbit bearings. While they don’t have an automatic oiling system, they do look pretty well lubricated in the video.

Starting the engine is a breeze. [robinhooodvsyou] created a lever which holds the exhaust valve open. This acts as a compression release. He also has a lever which lifts the entire engine and friction drive off the rear wheel. All one has to do is pedal up to cruising speed, engage the friction drive, then disengage the compression release.

We seriously love this hack. Sure, it’s not a practical vehicle, but it works – and from the looks of the video, it works rather well. The unmuffled pops of that low 4:1 compression engine reminds us of old stationary engines. The only thing we can think to add to [robinhooodvsyou’s] creation is a good set of brakes!

Continue reading “The DIY Open Crank Engine Moped”

Frankenstein, The Open Source Engine Control Unit

20140306_state

The Engine Control Unit is a vital part of every car made in the last 40 years or so, but unlike just about every other electronic device, open source solutions just don’t exist. [Andrey] is trying to change that with rusEfi, a project that hopes to bring together hardware, software, and engines in one easy to use package. He’s even designed Frankenstein, a full ECU ‘shield’ for the STM32F4 Discovery dev board.

This isn’t the first time we’ve seen [Andrey]’s adventures in building an ECU. An earlier board was also powered by the STM32F4 Discovery, and he actually drove his 96 Ford Aspire around using this homebrew ECU. It was only firing on two cylinders, but that was only a loose solder connection.

Of course building an ECU from scratch is worthless without the proper firmware that balances and engine’s fuel economy and performance. This sort of testing must be done empirically and [Andrey] has a Kickstarter going for the development of this firmware and some dyno time. No rewards, but it’s worth chipping in a buck or two. I did.

Videos below.

Continue reading “Frankenstein, The Open Source Engine Control Unit”

Gravity-Powered Generator: Real or Fake?

You thought we forgot about your favorite Hackaday comment game, didn’t you? Well, not only is ‘Real or Fake?’ back with a new installment, but this time it concerns everybody’s favorite impossibility: perpetual motion machines! It’s likely that you’ve already seen the photos of Brazilian energy group RAR Energia’s generator “powered exclusively by gravity” (translated). If you’re rolling your eyes and exclaiming “this is so last year..” you might want to scroll down to the bottom of the page; they’re still building this monstrosity and they’ve included some diagram imagesPerhaps someone who reads Portuguese can better translate the claim that the devices are “demonstration models with capacity to generate 30kW.” Oh, didn’t you know? There are two of them now: one in Brazil that is presumably functioning, and a second under construction in Gilman, Illinois.

Now, before you all scream “Photoshopped,” take a gander at a FotoForensics analysis of one of the images, where ELA (error level analysis) seems to indicate consistent levels of compression. EXIF data shows the pictures were shot with a Sony DSC-WX5 and saved in PhotoScape. It may be simpler than that: you can easily recognize the same employees in different shots from different angles, and there are quite a lot of photos. RAR Energia’s most recent endeavor—a second machine in Gilman Illinois—seems to have been erected in the past two months. The Gilman warehouse is located on property belonging to bio-diesel manufacturing firm Incobrasa Industries (named a “Company of the [RAR Energia] group” on the RAR Energia site). Here’s a little internet sleuthing for your consideration: a photo of the completed warehouse and a Google maps link to the location in question (40.763176, -88.012706). Note the distinctly shaped building in the background (another view here, during construction), which can be found due south of the location indicated in the Google maps link. We’re not suggesting that you completely rule out image manipulation, but if it’s Photoshopped, it’s a damned elaborate job.

Unfortunately, there aren’t any videos demonstrating motion or any explanation for how the system works other than vagaries about perpetual energy. So, does this thing exist—and did this company really build two of them? Does it work…or, well, somehow do something?

Sterling Engine Kludged Together From Whatever

sterling-engine-from-whatever

Watching [Jam BD] build this working Sterling Engine from nothing is awe-inspiring. He literally did with what he had on hand. Even his build log forgoes phrases like “I ordered a…” in exchange for “I didn’t have any so…”.

The cylinder heated by a candle is a pipe stuffed with aluminum foil which was hammered flat to get the best seal possible. The CDs prominently featured on the final product act as the fly-wheel. To ensure that there is enough mass [Jam] ganged three of them together. There is also a counter-weight affixed just off-center to help keep the wheel turning. The gears shown above were actually used more like mounting plates to build a cam. Looking at the body and frame of the device makes us wonder how in the heck this thing actually came together?

We can’t get enough of these kinds of hacks, which is why we had to go back and watch the tuna can Sterling Engine one more time.

Continue reading “Sterling Engine Kludged Together From Whatever”

Producing Ozone at 3500 RPM

motor

Motors are fun, and high voltage even more so. We’re guessing that’s what went through [brazilero2008]’s mind when he put together an electrostatic motor using upcycled parts he found lying around.

The electrostatic rotor works by connecting a very high voltage, low current power supply – in this case an industrial air ionizer – to a set or rotors surrounding a plastic rotor. The hot electrodes spray electrons onto the rotor, which are picked up by the ground electrodes. If the system doesn’t arc too much, you have yourself a plastic rotor that spins very, very fast.

[brazilero]’s device is made out of an aluminum turkey pan, a few acrylic tubes, and a few cardboard disks; all stuff you can find in a well-stocked trash can. After completing the device, it was taken apart and finished and screwed onto a beautiful painted jewelry box. Very cool for something you can make out of trash, and dangerous enough to be very interesting.

Continue reading “Producing Ozone at 3500 RPM”

3D Printed Cutaway Jet Engine Sounds Great

Thanks to the wonders of 3D printing, you can now have a 3D printed a jet engine of your very own. Unlike jet engines we’ve seen before, this one comes with no chance of the operator getting burned to a crisp. [Gerry] is a self-proclaimed “broken down motor mechanic” from New Zealand. He’s designed a rather awesome jet engine in 3D Software, and printed it on his UP Plus printer. The engine itself is a cutaway model of a high-bypass turbofan engine. While we’re not sure which make and model of jet engine this cutaway represents, we’re still very impressed.

This isn’t just a static display model – the engine will actually spin up with the help of compressed air.  Separate start and run tubes send air to the turbine and main fain respectively. It even has that distinctive turbofan “buzz saw” sound. While this model is relatively safe, [Gerry] does warn to keep the pressure down, or it could come apart. To that end we’d recommend adding a regulator before the quick disconnect.

The Thingiverse project is a bit light on instructions.  However this situation is remedied by [hacksaw], who posted a pictorial and build log up on pp3d. [Hacksaw] did run into a few problems with the build, but nothing a little bit of superglue couldn’t fix. It may have fewer moving parts, but this definitely puts our old Visible V8 Engine kit to shame.

Continue reading “3D Printed Cutaway Jet Engine Sounds Great”

An homemade 48cc V8 engine with injection

A few months ago we mentioned [Keith]’s first project in the works, a 1/4 scale V8 engine. Today, we are amazed to see that his engine is finished and running really smoothly. What is even more impressive is that the entire project has been completed on manual mills and lathes. The thread on the Home Model Engine Machinist forum contains his build log in which he details how all the different parts were made. The engine has an electric starter, uses a fuel injection system and [Keith] even made his own injection molds for several plastic parts. The ECU is based on the Megasquirt-II, we guess it must have taken [Keith] many tries before correctly setting its parameters. A video of the engine in action can be viewed after the break.

You can find our previous coverage of this project as well as other miniature engines on this feature from last April.

Continue reading “An homemade 48cc V8 engine with injection”