Say Hello to our New Robot Overlords

Well, that’s it. If SkyNet goes live once this 4-meter tall Avatar-style mech suit is in production, we’re all doomed.

Named [Method-2], the bipedal giant towers over the engineers testing it at Korea’s Hankook Mirae Technology, where they appear to have done everything possible to make this thing look terrifyingly awesome. The first video below shows the mech with a pilot on board, putting the arms through their paces. We count at least six degrees of freedom on each arm, not including the five digits on each hand that look like they could punch through a brick wall. Later in the video we see a tethered walking test with no pilot, but we also found a webcam video that purports to be the first walk with a pilot. Either way, the 1.5-ton machine shakes the floor with every step.

This is still a development phase project, as evidenced by the fact that the mech seems to be getting its power from an umbilical. But this company has dumped a lot of money into this thing, and we’d bet they intend to capitalize on it. Once it can run untethered, though, watch out. Until then, we’ll settle for this mecha-baby costume.

Continue reading “Say Hello to our New Robot Overlords”

Machinist Magic: Gauge Block Wringing

In this age of patent trolls and multi-billion dollar companies that make intellectual property claims on plant genes and photographing objects against a white background, you’d be forgiven for thinking that a patent on a plain steel block would be yet another recent absurdity. But no – [Carl Edvard Johansson] got a patent for his “Gauge Block Sets for Precision Measurement” in 1901. As [AvE] shows us with a video on how gauge blocks can be “wrung” together, there’s more to these little blocks than meets the eye.

Gauge block wringing is probably nothing new to experienced machinists, but for the rest of us, it’s a pretty neat trick. To start the show, [AvE] gives us a little rundown on “Jo blocks” and what they’re good for. Basically, each block is a piece of tool steel or ceramic that’s ground and lapped to a specific length. Available in sets of various lengths, the blocks can be stacked end to end to make up a very precise measuring stick. But blocks aren’t merely placed adjacent to each other – they physically adhere to each other via their lapped surfaces after being wrung together. [AvE] demonstrates the wringing technique and offers a few ideas on how this somewhat mysterious adhesion occurs. It’s pretty fascinating stuff and puts us in the mood to get a gauge block set to try it ourselves.

It’s been a while since we’ve seen [AvE] around Hackaday – last time out he was making carbon foam from a slice of bread. Rest assured his channel has been going strong since then, with his unique blend of laughs and insight into the secret lives of tools. Definitely worth checking out, and still skookum as frig.

Continue reading “Machinist Magic: Gauge Block Wringing”

Light Dimmer Shows How to Steal Power from AC Line

We see a lot of traffic on the tips line with projects that cover old ground but do so in an instructive way, giving us insight into the basics of electronics. Sure, commercial versions of this IR-controlled light dimmer have been available for decades. But seeing how one works might just help you design your Next Big Thing.

Like many electronic controls, the previous version of this hack required a connection to a neutral in addition to the hot. This version of the circuit relies on passing a small current through the light bulb the dimmer controls to avoid that extra connection. This design limits application to resistive loads like incandescent bulbs. But it’s still a cool circuit, and [Muris] goes into great detail explaining how it works.

We think the neatest bit is the power supply that actually shorts itself out to turn on the load. A PIC controls a triac connected across the supply by monitoring power line zero-crossing. The PIC controls dimming by delaying the time the triac fires, which trims the peaks off of the AC waveform. The PIC is powered by a large capacitor while the triac is conducting, preventing it from resetting until the circuit can start stealing power again. Pretty clever stuff, and a nice PCB design to boot.

Given the pace of technological and cultural change, it might be that [Muris]’ dimmer is already largely obsolete since it won’t work with CFLs or LEDs. But we can see other applications for non-switched mode transformerless power supplies. And then again, we reported on [Muris]’s original dimmer back in 2009, so the basic design has staying power.

Supercharged, Fuel Injected V10 Engine, at 1/3 Scale

Nearly three years in the making, behold the raw power and precision of this 1/3-scale V10 engine.

Coming in at 125 cubic centimeters displacement, [Keith Harlow]’s fuel injected masterpiece isn’t too far from the size of some motor scooter engines. We doubt the local Vespa club would look upon it as legit mod, but we’d love to see it. [Keith]’s build log is a long series of forum posts, but from what we’ve seen it looks like every part was made by hand with the exception of the fuel injection system. Even the caps for the spark plugs were custom injection molded right in [Keith]’s shop. And it appears that no CNC was used – even those intake headers and the rotors for the supercharger were hogged out of aluminum using a manual mill. The exhaust headers alone are straight up works of art. There’s a staggering amount of work here, which begs the question: why? The answer in this case is obviously, “Because he can.”

Few builds compare to the level of craftsmanship on display here. The Clickspring skeleton clock comes to mind, but for model engine builds we’d have to point to [Keith]’s earlier 1/4-scale V8 engine. And we’ll hasten to add that as much time as [Keith] has spent building these works of mechanical art, he’s probably dedicated just as much time to documenting them and giving back to his community. We can all learn a lesson from that.

Continue reading “Supercharged, Fuel Injected V10 Engine, at 1/3 Scale”

Acoustic Levitation with a Twist

Don’t blame us for the click-baity titles in the source articles about this handheld “acoustic tractor beam”. You can see why the popular press tarted this one up a bit, even at the risk of drawing the ire of Star Trek fans everywhere. Even the journal article describing this build slipped the “tractor beam” moniker into their title. No space vessel in distress will be towed by [Asier Marzo]’s tractor beam, unless the aliens are fruit flies piloting nearly weightless expanded polystyrene beads around the galaxy.

That doesn’t detract from the coolness of the build, revealed in the video below. There’s no tutorial per se, but an Instructables post is promised. Still, a reasonably skilled hacker will be able to replicate the results with ease straight from the video. Using mostly off the shelf hardware, [Marzo] creates a bowl-shaped phased array of ultrasonic transducers driven by an Arduino through a DC-DC converter and dual H-bridge driver board to boost the 40 kHz square waves from 5 Vpp to 70 Vpp. By controlling the phasing of the signals, the tractor beam can not only levitate small targets but also move them axially. It looks like a lot of fun.

Acoustic levitation is nothing new here – we’ve covered 3D acoustic airbending, as well as an acoustic flip-dot display. Being able to control the power of sound waves in a handheld unit is a step beyond, though.

Continue reading “Acoustic Levitation with a Twist”

Hand Cranked Generator Charges Supercaps, Starts Car

Pity the lowly lead-acid battery. A century of use as the go-to method for storing enough electrons to spin the starter motor of a car engine has endeared it to few.  Will newer technology supplant that heavy, toxic, and corrosive black box under your hood? If this supercapacitor boost box is any indication, then we’d say lead-acid’s days are numbered.

To be fair, we’ll bet that number is still pretty big. It takes a lot to displace a tried and true technology, especially for something as optimized as the lead-acid battery. But [lasersaber]’s build shows just how far capacitive storage has come from the days when supercaps were relegated to keeping your PC’s clock running. With six commercial 400F caps and a custom-built balance board, the bank takes a charge from a cheap 24V hand generator. The output is either to a heavy-duty lighter socket or some automotive-style lugs, and the whole thing is housed in a simple box partially constructed using energy stored in the bank. Can the supercaps start a car? Stay tuned after the break for the answer.

Although we’ve seen supercaps replace a motorcycle battery before, we’re a little disappointed that the caps used here only have a 1500-hour life – lead-acid wins that fight hands down. But this one gives us lots of ideas for future builds, and we’re heartened by the fact that the supercaps for this build ring up to less than $70.

Continue reading “Hand Cranked Generator Charges Supercaps, Starts Car”

Modified Baby Monitor Interrupts Your Groove in Case of Emergency

You try to be good, but the temptation to drown out the noise of parenthood with some great tunes is just too much to resist. The music washes over you, bringing you back to simpler times. But alas, once you plug in the kids started running amok, and now the house is on fire and there’s the cleaning up to do and all that paperwork. Maybe you should have tried modifying a baby monitor to interrupt your music in case of emergency?

Starting with an off-the-shelf baby monitor, [Ben Heck] takes us through the design goals and does a quick teardown of the circuit. A simple audio switching circuit is breadboarded using an ADG436 dual SPDT chip to allow either the baby monitor audio or music fed from your favorite source through to the output. [Ben] wisely chose the path of least resistance to detecting baby noise by using the volume indicating LEDs on the monitor. A 555 one-shot trips for a few seconds when there’s enough noise, which switches the music off and lets you listen in on [Junior]. The nice touch is that all the added components fit nicely in the roomy case and are powered off the monitor’s supply.

Maybe you’d prefer listening to the nippers less than watching them? In that case, this impromptu eye-in-the-sky baby camera might be a better choice.

Continue reading “Modified Baby Monitor Interrupts Your Groove in Case of Emergency”