Organize That Messy Prototype

You’re working away busily at your project. A pcb here cabled to a breadboard in the middle, and over there some motors and other devices. It should work but it doesn’t. Time to hook-up the multimeter but the test point is on the other side. As things are moved around to reach the point, the magic smoke escapes from a critical component. Should have put those pliers away.

Workbenches are always messy. [Ryan Clark] may have an idea that can help.  His Jigmod system — currently running a kickstarter campaign — uses an acrylic a polycarbonate sheet with a grid of mounting holes to keep prototyping hardware in place. If you need to move the prototype around there is no strain on the wiring and no way to set a circuit down on that pair of pliers. The positioning of everything is your decision.

[Ryan] is also providing breakout type boards for connectors like USB and Ethernet, switches, battery holders, and other typical components. This is one place where the system really shines. A lot of these interface connectors tend to be breadboard-unfriendly and the terminal blocks these modules offer solves those issues. When you need to demonstrate your project it’s easy to transport since everything is attached to the plate. No more disconnecting cables, especially jumper wires, and hoping you get them all hooked back the right way at the destination.

With so many dev boards out there we really enjoy seeing jigs that can hold them along with a breadboard. This Stickvise-inspired 3D printed jig sticks out in our minds as a favorite. Do you have your own system of organizing your prototype builds? We’d love to hear about it in the comments!

Porsche-themed Mancave Clock: There is no Substitute

With an extra Porsche brake rotor lying about and a persistent friend to be silenced, [GordsGarage] decided to fabricate a one-of-a-kind man cave wall clock.

This was not to be a boring old hang-it-flat-on-the-wall design, though. The Porsche rotor is a composite design, with a steel hub and a ceramic disc weighing only a third of what an all-steel rotor weighs. That inspired [GordsGarage] to fabricate a wall bracket to hold the rotor and allow it to spin, showing off both sides. The business side has a brushed aluminum clock face with decals cut with a s vinyl-plotter and designed to look like a Porsche tachometer, while the reverse side has a nice custom badge for his friend’s shop. The build log shares some of the nice touches that went into the clock, like powder coated parts to mimic stock Porsche red brake calipers, and the secret [GordsGarage] logo.

It may not have been a clock for social good, but it’s a great design and a nice build that’s sure to brighten up his friend’s shop. And mancave warming presents are apparently a thing now, so we’ll be sure to keep our finger on the pulse of this social trend.

3D Printed Battery Forms

What’s the worst thing that can happen when you are trying to show off a project? Dead batteries might not be the absolute worst thing, but it is pretty close to the top of the list. [KermMartian] has this problem every year at World Maker Faire with demos based around calculators. At first, he tried wedging power supply wires into the calculator using dead batteries to hold the wires in place. However, it didn’t take much wear and tear before the wires would pull out.

The solution? A 3D printed battery form that accepts metal hardware that can connect to the external power supply. The AAA-sized plastic batteries insert into the calculator’s battery compartment and the small machine screws and washers form the connection points.

Continue reading “3D Printed Battery Forms”

Golden Commodore C64 Brings the Bling to 8-Bit Computing

Sometimes, a hack is just a hack. And sometimes, a hack is nothing but a gold-plated Commodore C64.

Alright, it’s not gold-plated, it’s gilded. For the uninitiated, gilding is the process of gluing gold powder or gold leaf to an object. Gold is amazingly ductile – a tiny nugget 5mm in diameter can be hammered into a sheet of gold leaf that can cover about a half a square meter. It’s extremely thin and delicate and has to be handled very gingerly, and the gilder’s craft is therefore very meticulous. For more on gilding, see this post on signmaking with gold leaf.

[thefuturewas8bit], who runs a vintage Commodore web store, did a great job gilding a C64 case, just because. The attention to detail is fantastic – notice that even the edges of the keyboard cutouts are gilded and burnished. A nice finishing touch is swapping out the stock red power LED for a yellow one – red simply clashes too much. Lest you think there’s nothing to learn from a purely aesthetic hack, [thefuturewas8bit] shares a great tip for removing the metal badges from a plastic case – spray them with freeze-spray from the back to pop off the glue. No need to dig at them with a screwdriver and gouge or bend them. Nice trick.

Any hack can earn extra points for style, and we think that gold works well on the C64.  But if gold is a little too overstated for you, you can always try to score a colorful new injection-molded case for your vintage Commodore.

Visualizing the Fourier Transform

If you do any electronics work–especially digital signal processing–you probably know that any signal can be decomposed into a bunch of sine waves. Conversely, you can generate any signal by adding up a bunch of sine waves. For example, consider a square wave. A square wave of frequency F can be made with a sine wave of frequency F along with all of its odd harmonics (that is, 3F, 5F, 7F, etc.). Of course, to get a perfect square wave, you need an infinite number of odd harmonics, but in practice only a few will do the job.

Like a lot of abstract concepts, it is easy to understand the basic premise and you could look up any of the mathematical algorithms that can take a signal and perform a Fourier transform on it. But can you visualize why the transform works the way it does? If you can’t (or even if you can), you should check out [Mehmet’s] MATLAB visualization of harmonic circles. If you don’t have MATLAB yourself, you can always check out the video (see below).

Continue reading “Visualizing the Fourier Transform”

Over-the-top Hackerspace Donation box Brings out the Brony in you

“You’ll never believe how this happened, doc.” [Source: CRASH Space]
If you’re going to pass the hat for donations to your hackerspace, you might as well add to the value proposition and give potential donors a little something for their generosity. And what better way to cash in than to channel the inner Brony in your donors with a My Little Pony themed dollar-bill vortex box?

Sick of the boring cheezy-poof jug her hackerspace was using as a donation jar, not-a-Brony [Michelle] was inspired by the CRASH Space mascot Sparkles, pictured left, to build a new box that will maximize donations by providing donors with a multimedia extravaganza. The Plexiglas box, resplendent with laser-cut acrylic hearts and spangled with My Little Pony stickers, is fitted with a sensor so that donations trigger an MP3 of the MLP theme song. A scrolling LED marquee flashes a gracious message of thanks, and to complete the experience, a pair of fans creates a tornado of the fat stacks of cash in the bin.

Putting a little [Twilight Sparkle] into your donation box makes good financial sense, as does providing incentive to deposit bills rather than coins. This project reminds us of our recent post about a custom claw machine which could be leveraged as a value-added donation box – just add a coin slot. And rainbows.

Continue reading “Over-the-top Hackerspace Donation box Brings out the Brony in you”

Full Size Custom Claw Machine Built with Parts on Hand

You know how it goes – sometimes you look at your social calendar and realize that you need to throw together a quick claw machine. Such was the dilemma that [Bob Johnson] found himself in during the run-up to the Nashville Mini Maker Faire, and he came up with a nice design that looks like fun for the faire-goers.

Seeking to both entertain and enlighten the crowd while providing them with sweet, sweet candy, [Bob] was able to quickly knock together a claw machine using mainly parts he had on hand in the shop. The cabinet is nicely designed for game play and to show off the gantry mechanism, which uses aluminum angle profiles and skate bearings as custom linear slides. Plenty of 3D printed parts found their way into the build, from pillow blocks and brackets for the stepper motors to the servo-driven claw mechanism. A nice control panel and some color-coded LED lighting adds some zip to the look, and a Teensy LC runs the whole thing.

Like [Bob]’s game, claw machines that make it to Hackaday seem to be special occasion builds, like this claw machine built for a kid’s birthday party. Occasion or not, though, we think that fun builds like these bring the party with them.

Continue reading “Full Size Custom Claw Machine Built with Parts on Hand”