Hand Gestures Drive Car

There are a number of ways to control an automobile without using the pedals, and sometimes even without using the steering wheel. Most commonly these alternative control mechanisms are installed in vehicles whose owners are disabled in some way, but [Anurag] has taken this idea of alternative control one step further. He has built a car that can be driven by hand gestures alone.

On a remote controlled car, a Raspberry Pi 2 was installed that handles processing and communication. A wireless network is created on the Pi, and a laptop connects to the Pi over the network. The web camera on the laptop regularly captures frames at 15 fps to check for the driver’s hand gestures. The image is converted to gray scale, thresholded, contours are obtained, and the centroid and farthest points are obtained.

After some calculations are done, a movement decision is taken. The decision is passed to the Pi, which in turn, passed that to the internal chip of the car. All of the code is available on the project’s github page. [Anurag] hopes that this can be scaled up to full sized cars in the future. We’ve seen gesture-based remote controls before that rely on Sonar sensors, so it’s interesting to see one that relies strictly on image processing.

Continue reading “Hand Gestures Drive Car”

A Keypad Joypad For Your Retro Gaming

[TK] is a retro computer enthusiast who’s had some difficulty locating a joystick for his trusty Amiga 500. New ‘sticks are expensive, and battered survivors from the 80s go for more than they should.

Happily these old controllers were simple devices, having only five control lines for the four directions and a fire button which were active low. [TK] therefore cast around the available components and decided to craft his own controller from a numerical keypad.

Numerical joypad schematic
Numerical joypad schematic

Numerical keypads may be ubiquitous, but they’re not the perfect choice for a joypad. Instead of individual switches, they are wired as a matrix. [TK]’s controller works within that constraint without butchering the keypad PCB, though his layout has the left and right buttons below the up and down buttons. Looking at the schematic we wonder whether the 4-5-6 and 7-8-9 rows could be transposed , though joypad layout is probably a matter of personal choice.

Making the controller was a simple case of wiring the pad to a 9-pin D socket in the correct order, and plugging it into the Commodore. He reports that it’s comfortable to use and better than some of the lower-quality joysticks that were on the market back in the day. Veterans of Amiga gaming will understand that sentiment, there were some truly shocking offerings to be had at the time.

Quite a few home-made game controllers have made it onto these pages over the years. There is this one using tactile switches and a ballpoint pen, and a stick made from the idler wheel from a surplus VCR, but the ultimate crown of junkbox joysticks should go to this joystick made from clothes pins. If we take one thing away from all this home-made controller ingenuity, it is that what really matters is not the hardware but the gameplay.

You Speak, Your Scope Obeys

We’ve been scratching our heads about the various voice-recognition solutions out there. What would you really want to use one for? Turning off the lights in your bedroom without getting up? Sure, it has some 2001: A Space Odyssey flare flair, but frankly we’ve already got a remote control for that. The best justification for voice control, in our mind, is controlling something while your hands or eyes are already busy.

[Patrick Sébastien Coulombe] clearly has both of his hands on his oscilloscope probes. That’s why he developed Speech2SCPI, a quick mash-up of voice recognition and an oscilloscope control protocol. It combines the Julius open-source speech recognizer project with the Standard Commands for Programmable Instruments (SCPI) syntax to make his scope obey his every command. You’ve got to watch the video below the break to believe how well it works. It even handles his French accent.

Continue reading “You Speak, Your Scope Obeys”

Turning a Keyboard into a Pedal Board

Dedicated pedal switches for your computer can be really expensive. Keyboards on the other hand, despite having way more buttons, are dirt cheap! What if you could use a keyboard to build a pedal board? This hack is so simple, it’s almost ingenious.

[Shrodingers_Cat] took one of his spare keyboards, xTupuuoa rather nice Logitech G510 gaming keyboard, and pulled all the keys out except for four. You can do this with a flat head screwdriver quite easily — it’s also rather satisfying sending keys flying with each flick of the blade.

He then cut up some spare DVD cases he had, and turned them into pedal covers. They’re actually just nested inside the keyboard — he added some electrical tape to make sure they stayed in place and put it under his desk for the first test — it works great!

Of course you could always make something like this with an Arduino and some scrap wood instead…

[via r/DIY]

Eye Tracking Makes the Musical Eye Conductor for Everyone!

For his final project at the Copenhagen Institute of Interaction Design, [Andreas Refsgaard] decided to make something that matters : a system that allows anyone to control a musical instrument using only their eyes and facial expressions. Someone should enter this into a certain contest that’s running…

Dubbed the Eye Conductor, [Andreas] has created a highly customizable system that allows for a control interface that can be operated using only your eyes, and some facial expressions. Designed with the intent to allow everyone to enjoy playing music, [Andreas] user test the system at schools, housing communities for people with physical disabilities, and anyone he could find in a wheel chair. His intent is to continue the project so that all people can enjoy playing music.

The system is open, designed for inclusion and can be customised to fit the physical abilities of whoever is using it.

Continue reading “Eye Tracking Makes the Musical Eye Conductor for Everyone!”

The Origin of QWERTY

There are very few things that are surrounded with as much hearsay and rumor as the origins of the QWERTY layout of typewriters and keyboards. The reason behind the QWERTY layout isn’t as simple as ‘so the bars for each letter don’t collide with each other.’ That’s nonsense – it would make far more sense to improve the mechanism before changing the arrangement of the keyboard around.

That’s not the only fallacious argument for the creation of QWERTY. It’s also been called a marketing ploy; Stephen Jay Gould popularized the idea of the QWERTY keyboard being as it is so a salesman could peck out TYPE WRITER on the top row [1]. This also makes little sense. Why would the top row and not the home row be so privileged as to contain all the letters the make up the name of the machine. For that matter, wouldn’t a sales pitch be more impressive if TYPE WRITER were typed with one hand?

This doesn’t mean there’s not a method behind the madness of QWERTY – it’s just not as simple as jammed typewriter mechanisms or appeasing the wishes of salesmen in the 1870s. QWERTY didn’t come out of thin air, though, but folk tale history of this keyboard layout is sadly deficient.

Continue reading “The Origin of QWERTY”

Reviving The Best Keyboard Ever

For the last few decades, the computer keyboard has been seen as just another peripheral. There’s no need to buy a quality keyboard, conventional wisdom goes, because there’s no real difference between the fancy, ‘enthusiast’ keyboards and ubiquitous Dell keyboards that inhabit the IT closets of offices the world over.

Just like the mechanic who will only buy a specific brand of wrenches, the engineer who has a favorite pair of tweezers, or the amateur woodworker who uses a hand plane made 150 years ago, some people who use keyboards eight or twelve hours a day have realized the older tools of the trade are better. Old keyboards, or at least ones with mechanical switches, aren’t gummy, they’re precise, you don’t have to hammer on them to type, and they’re more ergonomic. They sound better. Even if it’s just a placebo effect, it doesn’t matter: there’s an effect.

This realization has led to the proliferation of high-end keyboards and keyboard aficionados hammering away on boards loaded up with Cherry MX, Alps, Gateron, Topre, and other purely ‘mechanical’ key switches. Today, there are more options available to typing enthusiasts than ever before, even though some holdouts are still pecking away at the keyboard that came with the same computer they bought in 1989.

The market is growing, popularity is up, and with that comes a herculean effort to revive what could be considered the greatest keyboard of all time. This is the revival of the IBM 4704 terminal keyboard. Originally sold to banks and other institutions, this 62-key IBM Model F keyboard is rare and coveted. Obtaining one today means finding one behind a shelf in an IT closet, or bidding $500 on an eBay auction and hoping for the best.

Now, this keyboard is coming back from the dead, and unlike the IBM Model M that has been manufactured continuously for 30 years, the 62-key IBM Model F ‘Kishsaver’ keyboard is being brought back to life by building new molds, designing new circuit boards, and remanufacturing everything IBM did in the late 1970s.
Continue reading “Reviving The Best Keyboard Ever”