Want to Make a PCB? The Pantum Knows…

We’ve done a lot of PCBs with the toner transfer method over the years. The idea is simple: print a pattern using toner (which is just ground up black plastic) and then use an iron or other heat and pressure device to transfer the toner to a copper-clad board. It works and it works well. But getting just the right combination of heat, pressure, release paper, and toner is sometimes tricky.

Some people hack their printers to turn off the fuser wire (to make the toner not stick to the paper) or to run a PCB directly through it. If you have a big expensive laser printer, though, you might not want to chop it up just to run PCBs. Have you looked at laser printer prices lately? We aren’t sure if it is cheap units flooding the market, or the overwhelming popularity of color printers, but you can pick up a Pantum P2500 for about $25 or $30–and probably get WiFi printing at that price. [Mlermen] picked one of these up and shows you how to convert it to a PCB printer.

Continue reading “Want to Make a PCB? The Pantum Knows…”

OpenFixture Takes the Pain Out of Pogo Pins

[Elliot] (no relation, but hey, cool name!) wrote in with his OpenFixture model for OpenSCAD. It’s awesome because it takes a small problem, that nonetheless could consume an entire day, and solves it neatly. And that problem is making jigs to test assembled electrical products: a PCB test fixture.

In the PCB design software, you simply note down the locations of the test points and feed these into the OpenSCAD model. ([Elliot] shows you exactly how to do it using KiCAD.) There are a few more parameters of the model that you can tweak to match your particulars, but you should have a DXF outline for a test jig in short order. Cut that out, assemble, and test.

If you have to make more than a few handfuls of a complicated circuit, it becomes worth it to start thinking about testing them systematically. And with this OpenSCAD model, you can have the test jig up and running before the first prototype boards are back in from the fab. How cool is that?

Scissors Make Great Automatic Cable Cutters

The team at [2PrintBeta] required a bunch of cables, heat shrink, and braid to be cut for their customers. They looked into an industrial cable cutter, but decided the price was a little too high, so they decided to make their own. They had a bunch of ideas for cutting: Using a razor blade?  Or a Dremel with a cutting wheel? What they came up with was a DIY cable cutter that uses a pair of scissors, a pair of stepper motors, a pair of 3D printed wheels and an Arduino.

The first thing the team had to do was to mount the scissors so they would cut reliably. One of the stepper motors was attached to a drive wheel that had a bolt mounted on it. This went through one of the scissors’ handles, the other handle was held in place on the machine using screws. The second stepper motor was used to rotate the wheels that drives the cable through to the correct length. [2PrintBeta] used a BAM&DICE shield and two DICE-STK stepper motor drivers on an Arduino Mega to control the cutter.

The [2PrintBeta] team are pretty good at doing things themselves, as we’ve seen previously with their DIY plastic bender. And again, with this automatic cable cutter, they’ve seen a need and resolved it using the things at their disposal and some DIY ingenuity.

Continue reading “Scissors Make Great Automatic Cable Cutters”

A Cheap, 555-Based Geiger Counter

Every mad scientist’s lair needs a Geiger counter. After all, if that UFO crashes on the back patio, you might need to know if it is hot. [Tanner_Tech] shows you how to build a cheap one that will get the job done.

You do need a Geiger tube, but a quick search of a popular auction site shows plenty of Russian surplus for a few bucks. The other thing you need is a source of high voltage (about 400V), which is the heart of the circuit using a 555-based DC to DC converter. You can see a video of the device working, below.

The DC to DC converter needs a transformer that [Tanner] swiped out of an alarm clock. A piezo transducer (stolen from a junk microwave) gives you the characteristic click. If you prefer solid state over hollow state, there’s an open source project that uses a PIN diode as a sensor. Or you could add an Arduino and some LEDs.

Continue reading “A Cheap, 555-Based Geiger Counter”

Upcycle An Isolation Transformer

There are several reasons you should have an isolation transformer. They can prevent ground loops and also prevent a device under test from having a DC path to ground (or isolate an oscilloscope from DC ground, which can be dangerous in its own right, but that’s another discussion). [Tanner_tech] noticed that finding ballast transformers for sodium vapor street lights is getting easier as more street lights move to LED technology. What to do with these transformers? Build an isolation transformer, of course.

Of course, your dumpster transformer might be a little different than the one shown in the post (and the video, below). [Tanner] shows how to work out the leads you need. A little wood work and a PC power supply case finished the project.

Judging from the comments, some people take [Tanner’s] talk about safety as an implication that a transformer makes working on mains safe. It doesn’t. It makes it safer if you know what you are doing. Working with high voltage isn’t a place to learn by doing.

If you want some practical advice, [Jenny List] has a good read for you. You probably also ought to invest an hour in watching this video that has a lot of practical advice.

Continue reading “Upcycle An Isolation Transformer”

Fridge Parts Make Air Compressor That’s Easy on the Ears

Compressed air is great to have around the shop. The trouble is, most affordable compressors are somewhere between “wake the dead” and “the reason Pete Townshend is deaf” on the decibel scale. But with a little ingenuity and a willingness to compromise on performance, you might find this ultra-quiet, ultra-cheap air compressor a welcome way to keep the peace in your shop.

Yes, this compressor under-performs even a Harbor Freight pancake compressor which can be had for $60 and is ready to work right out of the box. In fact, [Eric Strebel]’s design sort of requires you to buy an air tank, and the easiest way to do that might be just to buy the compressor in the first place. But the off the shelf unit won’t run as quietly as this one does, what with a refrigerator compressor swapped in for the original motor and pump. There’s also a silencer on the input side, fashioned from a shaving cream can and some metal wool. The video below shows the build, and the results are impressive, at least from a noise perspective. Whether it suits your shop depends on your application – it certainly won’t run an impact wrench, but it’ll blow chips off your mill or dust out of your computer.

Fridge compressors are a natural starting point for air compressor builds, like this fire extinguisher based design, or this high-pressure tandem compressor. But if you need high flow and don’t care about the racket, try ganging four HF compressors in parallel.

Continue reading “Fridge Parts Make Air Compressor That’s Easy on the Ears”

Peculiar Fluid Dynamics Creates Hot and Cold Air

We’re fascinated by things with no moving parts or active components that work simply by virtue of the shape they contain — think waveguides and resonators for microwave radiation. A similarly mystical device from the pneumatics world is the Hilsch Vortex Tube, and [This Old Tony] decided to explore its mysteries by whipping up a DIY version in his shop.

Invented in the 1930s, vortex tubes are really just hollow tubes with an offset swirl chamber. Incoming compressed air accelerates in the swirl chamber and heads up the periphery of the long end of the tube, gaining energy until it hits a conical nozzle. Some of the outer vortex escapes as hot air, while the rest reflects off the nozzle and heads back down the pipe as a second vortex inside the outer one. The inner vortex loses energy and escapes from the short end as a blast of cold air – down to -50°C in some cases. [Tony]’s build doesn’t quite approach that performance, but he does manage to prove the principle while getting a few good-natured jabs into fellow vloggers [AvE] and [Abom79].

We’ve covered vortex tubes before, but as usual [Tony]’s build shines because he machines everything himself, and because he tries to understand what’s making it work. The FLIR images and the great video quality are a bonus, too.

Continue reading “Peculiar Fluid Dynamics Creates Hot and Cold Air”