Absolute Power

We recently noticed a very cool-looking series of power supply modules on a few of the Chinese deal web sites. Depending on the model, they provide a digitally-controlled voltage with metering. You need to provide at least a volt or so over the maximum desired output voltage. You can see a video from [iforce2d] below. The module in the video is rated for 5A at 50V maximum, but there are other sizes available. For those interested in graphs and numbers [lgyte] did a lot of characterization of these modules.

There was a time when importing goods from far away places was somewhat of an art. Finding suppliers, working out payment, shipping, and customs meant you had to know what you were doing. Today, you just surf the web, find what you want, pay with PayPal, and stuff shows up on your doorstep from all four corners of the globe.

There is one problem, though. We see a lot of cool stuff from China and some of it is excellent, especially for the price. Frankly, though, some of it is junk. It is hard to tell which is which. What’s more is even though in theory you might be able to return something, usually the freight charges make that impractical. So when you get a dud, you are likely to just eat it and chalk it up to experience. So the question is: how good (or bad) or these power supply modules?

Continue reading “Absolute Power”

Turn cheap USB soldering irons in to tweezers

This is 2016, and almost every hacker dabbles with SMD parts now, unlike back in the day. This means investing in at least some specialized tools and equipment to make the job easier. One handy tool is the SMD soldering tweezers – useful not only for manual soldering of parts, but also for de-soldering them quickly and without causing damage to the part or the board. Often, especially when repairing stuff, using a hot air gun can get tricky if you want to remove just one tiny part.

smd_tweezer_04[adria.junyent-ferre] took a pair of cheap £5 USB soldering irons and turned them into a nifty pair of SMD soldering tweezers. The two irons are coupled together using a simple, 3D printed part. [adria]’s been through a couple of iterations, so the final version ought to work quite well. The video after the break shows him quickly de-soldering a bunch of 0805 SMD resistors in quick succession.

Earlier this year, we had posted [BigClive]’s tear down of these 8 watt USB soldering irons which turned out to be surprisingly capable and this spurred [adria] to order a couple to try them out.

The 3D printed part is modeled in SolveSpace – a parametric 2D and 3D CAD software that we blogged about a while ago. Continue reading “Turn cheap USB soldering irons in to tweezers”

Building an IoT Drill Press for Reasons Unknown

He’s a little cagey about the reasons, but [Ivan Miranda] plans to put a drill press on the internet. What could go wrong with that?

We’ll take [Ivan] at his word that there’s a method to this madness and just take a look at the build itself, in the hopes that it will inspire someone to turn their lowly drill press into a sorta-kinda 2-axis milling machine. [Ivan] makes extensive use of his 3D printer to fabricate the X-axis slide that bolts to the stock drill press table. And before anyone points out the obvious, [Ivan] already acknowledges that the slide is way too flimsy to hold up to much serious drilling, especially considering the huge mechanical advantage of the gearing he used to replace the quill handle for a powered Z-axis. The motor switch was also replaced with a solid state relay. The steppers, relay, and limit switches are all fed into a Teensy that talks to an ESP8266, which will presumably host a web interface to put this thing online.

The connected aspects of the drill press become a little more clear after the break.

Continue reading “Building an IoT Drill Press for Reasons Unknown”

Foundry From Scrapped Oven for Cheap, Clean Castings

Home-built foundries are a popular project, and with good reason. Being able to melt and cast metal is a powerful tool, even if it’s “only” aluminum. But the standard fossil-fuel fired foundries that most people build are not without their problems, which is where this quick and clean single-use foundry comes into play.

The typical home foundry for aluminum is basically a refractory container of some kind that can take the heat of a forced-air charcoal or coal fire. But as [Turbo Conquering Mega Eagle] points out, such fuels can lead to carbon contamination of the molten aluminum and imperfections when the metal is cast. With a junked electric range, [Turbo Conquering Mega Eagle] fabricates a foundry that avoids the issue in an incredibly dangerous way. The oven’s heating element is wrapped around an old stainless saucepan, fiberglass bats from the stove insulate the ad hoc crucible, and the range’s power cord is attached directly to the heating element. The video below shows that it does indeed melt aluminum, which is used to sand cast a fairly intricate part.

We can’t see getting more than one use out of this setup, though, so it’s only as sustainable as the number of ranges you can round up. But it’s worth keeping in mind for one-off jobs. For a more permanent installation, check out this portable propane-powered foundry. And to see what you can make with one, check out this engine breather cast from beer cans.

Continue reading “Foundry From Scrapped Oven for Cheap, Clean Castings”

Nascent Project: Open Source Scanning Electron Microscope

I used to have access to some pretty nice Scanning Electron Microscopes (a SEM) at my day job. While they are a bit more complex than a 3D printer, they are awfully handy when you need them. [Adam Guilmet] acquired a scrapped unit and started trying to figure out how to breathe life into it. His realization was that a SEM isn’t all that complicated by today’s standards. So he has set out to take what he has learned and build one from scrap.

In all fairness, he has a long way to go and is looking for help. He currently says, “[T]his is being powered by fairy dust, unicorn farts, and a budget that would make the poorest of students look like Donald Trump.” Still, he’s collected a lot of interesting data and we hope he can build a team that can succeed.

Continue reading “Nascent Project: Open Source Scanning Electron Microscope”

Salvaged Scope Lets You Watch the Music

Everyone likes a good light show, but probably the children of the 60s and 70s appreciate them a bit more. That’s the era when some stereos came with built-in audio oscilloscopes, the search for which led [Tech Moan] to restore an audio monitor oscilloscope and use it to display oscilloscope music.

If the topic of oscilloscope music seems familiar, it may be because we covered [Jerobeam Fenderson]’s scope-driving compositions a while back. The technique will work on any oscilloscope that can handle X- and Y-axis inputs, but analog scopes make for the best display. The Tektronix 760A that [Tech Moan] scrounged off eBay is even better in that it was purpose-built to live in an audio engineer’s console for visualizing stereo audio signals. The vintage of the discontinued instrument isn’t clear, but from the DIPs and discrete components inside, we’ll hazard a guess of early to mid-1980s.  The eBay score was a bargain, but only because it was in less that perfect condition, and [Tech Moan] wisely purchased another burned out Tek scope with the same chassis to use for spares.

The restored 760A does a great job playing [Jerobeam]’s simultaneously haunting and annoying compositions; it’s hard to watch animated images playing across the scope’s screen and not marvel at the work put into composing the right signals to make it all happen. Hats off to [Tech Moan] for bringing the instrument back to life, and to [Jerobeam] for music fit for a scope.

Continue reading “Salvaged Scope Lets You Watch the Music”

Controlling Your Instruments From A Computer: Doing Something Useful

Do you know how to harvest data from your bench tools, like plotting bandwidth from your oscilloscope with a computer? It’s actually pretty easy. Many bench tools make this easy using a standard protocol with USB to make the connection.

In the previous installment of this article we talked about the National Instruments VISA (Virtual Instrument Software Archetecture) standard for communicating with your instruments from a computer, and introduced its Python wrapper with a simple demonstration using a Raspberry Pi. We’ll now build on that modest start by describing a more useful application for a Raspberry Pi and a digital oscilloscope; we’ll plot the bandwidth of an RF filter. We’ll assume that you’ve read the previous installment and have both Python and the required libraries on your machine. In our case the computer is a Raspberry Pi and the instrument is a Rigol DS1054z, but similar techniques could be employed with other computers and instruments.

Continue reading “Controlling Your Instruments From A Computer: Doing Something Useful”