Make a PVC Drill Press

There are two types of people in this world: people who think that PVC is only suitable for plumbing, and people who don’t even know that you can use PVC to carry water. Instructables user [amjohnny] is clearly of the latter school. His PVC Dremel drill press is a bit of an oldie, but it’s still a testament to the pipefitter’s art. And you can watch it in action in the video embedded below.

Things we particularly like about this build include the PVC parallelogram movement, springs around tubes to push the Dremel head back up, and the clever use of a T-fitting and screw plug to hold the press in its lowest position. We wonder how one could add a depth stop to this thing. No matter, we love watching it work.

Anyway, this is just one hack of many that emphasizes the importance of a drill press in basically anyone’s life, as well as the ease of DIY’ing into one. If you’re in the PVC-haters camp, but have some scrap wood and drawer slides or plastic offcuts lying around, you have the makings of a rudimentary press — a welcome tool in the shop.

Continue reading “Make a PVC Drill Press”

Hackaday Prize Entry: A CNC Mill Without The C

It’s a staple of home CNC construction, the 3D mill built on the bench from available parts. Be the on a tubular, plywood, or extruded aluminum frame, we’ve seen an astonishing array of mills of varying levels of capability.

The norm for such a mill is to have a computer controlling it. Give it a CAD file, perform the software magic, press button, receive finished object (Or so the theory goes). It’s a surprise then to see a mill in which the input doesn’t come from a CAD file, instead all control is done by hand through the medium of a joystick. [Mark Miller]’s 3D printed freeform carving machine is a joystick-controlled mill with a rotary tool on an arm facing a rotatable bed, and it can perform impressive feats of carving in expanded foam.

You might ask why on earth you should make a machine such as this one when you could simply pick up a rotary tool in your hand and start carving. And you’d be right, from that perspective there’s an air of glorious uselessness to the machine. But to take that view misses the point entirely, it’s a clever build and rather a neat idea. We notice he’s not put up the files yet for other people to have a go, if someone else fancies making CNC software work with it then we’re sure that would be possible.

There is a video showing the basic movements the mill is capable of, which we’ve put below the break. Best to say, though, it’s one on which to enable YouTube’s double speed option.

Continue reading “Hackaday Prize Entry: A CNC Mill Without The C”

Casting Machine Bases in Composite Epoxy

When you’re building a machine that needs to be accurate, you need to give it a nice solid base. A good base can lend strength to the machine to ensure its motions are accurate, as well as aid in damping vibrations that would impede performance. The problem is, it can be difficult to find a material that is both stiff and strong, and also a good damper of vibrations. Steel? Very stiff, very strong, terrible damper. Rubber? Great damper, strength leaves something to be desired. [Adam Bender] wanted to something strong that also damped vibrations, so developed a composite epoxy machine base.

[Adam] first takes us through the theory, referring to a graph of common materials showing loss coefficient plotted against stiffness. Once the theory is understood, [Adam] sets out to create a composite material with the best of both worlds – combining an aluminium base for stiffness and strength, with epoxy composite as a damper. It’s here where [Adam] begins experimenting, mixing the epoxy with sand, gravel, iron oxide and dyes, trying to find a mixture that casts easily with a good surface finish and minimum porosity.

With a mixture chosen, it’s then a matter of assembling the final mould, coating with release agent, and pouring in the mixture. The final result is impressive and a testament to [Adam]’s experimental process.

We’ve seen similar builds before — like this precision CNC built with epoxy granite — but detail in the documentation here is phenomenal.

A Wireless Oscilloscope Isn’t As Dumb As It Sounds

The latest CrowdSupply campaign is a wireless, Bluetooth oscilloscope that doesn’t make a whole lot of sense until you really think about it. Once you get it, the Aeroscope wireless oscilloscope is actually a pretty neat idea.

If the idea of battery-powered, Bluetooth-enabled test and measurement gear sounds familiar, you’re not dreaming. The Mooshimeter, also a project on CrowdSupply, is a multichannel multimeter with no buttons, no dial, and no display. You use the Mooshimeter through an app on your phone. This sounds like a dumb idea initially, but if you want to measure the current consumption of a drone, or under the hood of your car while you’re driving, it’s a really, really great idea.

The specs of the Aeroscope aren’t bad for the price. It is, of course, a one-channel scope with 20 MHz bandwidth and 100Msps. Connection to the device under test is through pokey bits or grabby bits that screw into an SMA connector, and connection to a display is over Bluetooth 4.0. You’re not getting a scope that costs as much as a car here, but you wouldn’t want to put that scope in the engine bay of your car, either.

The Aeroscope is currently on CrowdSupply for $200. Compared to the alternatives, that’s a bit more than the no-name, USB scopes. Then again, those are USB scopes, not a wireless, Bluetooth-enabled tool, and we can’t wait to see what kind of work this thing enables.

Electric Arc Furnace Closes the Loop

When we think of an Electric Arc Furnace (EAF), the image that comes to mind is one of a huge machine devouring megawatts of electricity while turning recycled metal into liquid. [Gregory Hildstrom] did some work to shrink one of those machines down to a practical home version. [Greg] is building on work done by [Grant Thompson], aka “The King of Random” and AvE. Industrial EAFs are computer controlled devices, carefully lowering a consumable carbon electrode into the steel melt. This machine brings those features to the home gamer.

[Greg] started by TIG welding up an aluminum frame. There isn’t a whole lot of force on the Z-axis of the arc furnace, so he used a stepper and lead screw arrangement similar to those used in 3D printers. An Adafruit stepper motor shield sits on an Arduino Uno to control the beast. The Arduino reads the voltage across the arc and adjusts the electrode height accordingly.

The arc behind this arc furnace comes from a 240 volt welder. That’s where [Greg] ran into some trouble. Welders are rated by their duty cycle. Duty cycle is the percentage of time they can continuously weld during a ten minute period. A 30% duty cycle welder can only weld for three minutes before needing seven minutes of cooling time. An electric arc furnace requires a 100% duty cycle welder, as melting a few pounds of steel takes time. [Greg] went through a few different welder models before he found one which could handle the stress.

In the end [Greg] was able to melt and boil a few pounds of steel before the main 240 V breaker on his house overheated and popped. The arc furnace might be asking a bit much of household grade electrical equipment.

Continue reading “Electric Arc Furnace Closes the Loop”

Roam the Wastelands with this Fallout-Themed Mini Geiger Counter

For anyone who has worked with radioactive materials, there’s something that’s oddly comforting about the random clicks of a Geiger counter. And those comforting clicks are exactly why we like this simple pocket Geiger counter.

Another good reason to like [Tim]’s build is the Fallout theme of the case. While not an item from the game, the aesthetic he went for with the 3D-printed case certainly matches the Fallout universe. The counter itself is based on the popular Russian SBT-11A G-M tubes that are floating around eBay these days. You might recall them from coverage of this minimalist Geiger counter, and if you were inspired to buy a few of the tubes, here’s your chance for a more polished build. The case is stuffed with a LiPo pack, HV supply, and a small audio amp to drive the speaker. The video below shows it clicking merrily from a calibration source.

We can see how this project could be easily expanded — a small display that can show the counts per minute would be a great addition. But there’s something about how pocketable this is, and just the clicking alone is enough for us.

Continue reading “Roam the Wastelands with this Fallout-Themed Mini Geiger Counter”

How An Oscilloscope Probe Works, And Other Stories

The oscilloscope is probably the most versatile piece of test equipment you can have on your electronics bench, offering a multitude of possibilities for measuring timing, frequency and voltage as well as subtleties in your circuits revealed by the shape of the waveforms they produce.

On the front of a modern ‘scope is a BNC socket, into which you can feed your signal to be investigated. If however you simply hook up a co-axial BNC lead between source and ‘scope, you’ll immediately notice some problems. Your waveforms will be distorted. In the simplest terms your square waves will no longer be square.

Why is this? Crucial to the operation of an oscilloscope is a very high input impedance, to minimise current draw on the circuit it is investigating. Thus the first thing that you will find behind that BNC socket is a 1 megohm resistor to ground, or at least if not a physical resistor then other circuitry that presents its equivalent. This high resistance does its job of presenting a high impedance to the outside world, but comes with a penalty. Because of its high value, the effects of even a small external capacitance can be enough to create a surprisingly effective low or high pass filter, which in turn can distort the waveform you expect on the screen.

The answer to this problem is to be found in your oscilloscope probe. It might seem that the probe is simply a plug with a bit of wire to a rigid point with an earth clip, but in reality it contains a simple yet clever mitigation of the capacitance problem.

Continue reading “How An Oscilloscope Probe Works, And Other Stories”