A man in a dark shirt stands at a podium in front of a projector screen with the text "50% OF US CAR TRIPS" in white above yellow text saying "1 HUMAN < 3 MILES". The screen is flanked by decor saying "Supercon" in white on a black background.

Supercon 2022: Bradley Gawthrop Wants You To Join The PEV Revolution

During the 20th Century, much of the western world decided that motor vehicles were the only desirable form of transportation. We built our cities to accommodate cars through parking, stop lights, and any number of other infrastructure investments so that you could go get milk and bread in style. In the US, 50% of automobile trips are less than three miles and have only one occupant. [Bradley Gawthrop] asked if there might be a more efficient way to do all this? Enter the Personal Electric Vehicle (PEV).

What Are PEVs?

PEVs are a nascent part of the transportation mix that fall under the wider umbrella of “micromobility,” including scooters, bikes, skateboards, and the like. The key differentiator here is that they are at least partially electrically-driven. [Gawthrop] walks us through several of the different types during his Supercon 2022 talk, but since they are all small, electric powered devices for transporting one or two people, they can trace their lineage back to the infamous Segway Human Transporter.

Using an electric motor or two connected to a controller and batteries, the overall system complexity for any of these devices is quite low and ripe for the hacking. Given the right tools and safety precautions, anyone should be able to crack a PEV open and repair or tinker with it. As with many things in life, the real story is more complicated.

As [Gawthrop] notes, many a hacker has said, “I wish I’d been able to be involved in X before…” where X equals some technology like home automation and it’s before it got creepy or dystopian in some manner. He exhorts us that the time to be in on the ground floor with PEVs is now. Continue reading “Supercon 2022: Bradley Gawthrop Wants You To Join The PEV Revolution”

An open engine bay for a small car. The wheels are off so the hubs and brakes are visible to the side and the electric motor mounted on top of the vehicle's original engine block is in the center of the image.

A Different Approach To EV Conversions

While there are a lot of exciting electric vehicles finally coming to market, many of us feel nostalgic for the fossil cars of our youth. [Mihir Vardhan] restored his grandfather’s car with an unusual gas-to-EV conversion.

While this conversion starts in the usual fashion by pulling out the gas engine, [Vardhan] takes a different tack than most by not just bolting an electric motor up to the transmission. Instead, he and his crew removed the head and pistons from the petrol burner and bolted the electric motor to the top on an L-shaped bracket. Using the timing belt to transfer power to the crankshaft, there is no need to figure out additional motors for the A/C compressor or power steering pump, greatly simplifying implementation.

[Vardhan] did need to add a vacuum pump for the braking system and used a DC/DC converter to step down the 72V traction battery voltage to the 12V needed to charge the accessory battery. While it doesn’t exactly boast the performance of a Tesla, his bargain-basement conversion does yield a converted vehicle that can get around town for only around $3k US, even if it does mean your EV still needs oil changes. We think this could work even better on a vehicle with a timing chain instead of a belt, but it’s certainly an interesting way to go about the conversion process.

We’ve covered our fondness for EV conversions in the past for cars, motorcycles, and boats if you’d like to dig deeper. Have your own EV conversion you think we should cover? Send us a tip!

Continue reading “A Different Approach To EV Conversions”

An Unexpected Upset In EV Charging Standards

Last November, Tesla open-sourced parts of its charging infrastructure, not-so-humbly unveiling it as the North American Charging Standard (NACS). It’s finally taking off with a number of manufacturers signing on.

Companies launching “standards” based on their previously proprietary technology in opposition to an established alternative usually leads to standards proliferation. However, with recent announcements from Ford, GM, and Rivian that they would begin supporting NACS in their vehicles, it seems a new dominant standard is supplanting CCS (and the all-but-dead CHAdeMO) in North America.

As Tesla already has the most extensive charging network on the continent and has begun opening it up for other EVs, it makes sense that other marques would want to support NACS, if nothing else to satiate customer demand for a dead-simple charging experience. Dongles are annoying enough for plugging in an external monitor. Having to mess with one while handling high-power electrical connections is less than ideal, to say the least.

If you want to add NACS to your own EV project, the standard is here. We’ve discussed some of the different standards before as well as work toward wirelessly charging EVs (besides the inductive charger on the EV1). It certainly seems like the time to get in on the ground floor of an EV charging empire with an army of Charglas.

Hackaday Links Column Banner

Hackaday Links: May 28, 2023

The Great Automotive AM Radio War of 2023 rages on, with the news this week that Ford has capitulated, at least for now. You’ll recall that the opening salvo came when the US automaker declared that AM radio was unusable in their EV offerings thanks to interference generated by the motor controller. Rather than fixing the root problem, Ford decided to delete the AM option from their EV infotainment systems, while letting their rolling EMI generators just keep blasting out interference for everyone to enjoy. Lawmakers began rattling their sabers in response, threatening legislation to include AM radio in every vehicle as a matter of public safety. Ford saw the writing on the wall and reversed course, saying that AM is back for at least the 2024 model year, and that vehicles already delivered without it will get a fix via software update.

Continue reading “Hackaday Links: May 28, 2023”

Vehicle-to-Grid Made Easy

As electric cars continue to see increased adoption, one associated technology that was touted long ago that still hasn’t seen widespread adoption is vehicle-to-grid or vehicle-to-home. Since most cars are parked most of the time, this would allow the cars to perform load-levelling for the grid or even act as emergency generators on an individual basis when needed. While this hasn’t panned out for a variety of reasons, it is still possible to use an EV battery for use off-grid or as part of a grid tie solar system, and now you can do it without needing to disassemble the battery packs at all.

Normally when attempting to use a scrapped EV battery for another use, the cells would be removed from the OEM pack and reorganized to a specific voltage. This build, however, eliminates the need to modify the packs at all. A LilyGO ESP32 is used to convert the CAN bus messages from the battery pack to the Modbus communications protocol used by the inverters, in this case a Fronius Gen24, so the inverter and battery can coordinate energy delivery from one to the other automatically. With the hard part out of the way, the only other requirements are to connect a high voltage DC cable from the battery pack to the inverter.

[Dala], the creator of this project, has taken other steps to ensure safety as well that we’d recommend anyone attempting to recreate this build pays close attention to, as these battery packs contain an extremely large amount of energy. The system itself supports battery packs from Nissan Leafs as well as the Tesla Model 3, which can usually be found for comparably low prices. Building battery energy storage systems to make up for the lack of commercially-available vehicle-to-home systems isn’t the only use for an old EV battery, though. For example, it’s possible to use Leaf batteries to triple the range of other EVs like [Muxsan] did with this Nissan van.

Continue reading “Vehicle-to-Grid Made Easy”

Wireless Charging On A Massive Scale

Despite the increasing popularity of various electric vehicles, the limits of battery technology continue to be a bottleneck in their day-to-day use. They don’t behave well in extreme temperatures, they can wear out quickly, and, perhaps most obviously, charging them is often burdensome. Larger batteries take longer to charge, and this can take a lot of time and space, but this research team from Chalmers University are looking to make this process just a little bit easier.

The group has been developing an inductive wireless charging method for large vehicles including cars, trucks, busses, and ferries that can deliver 500 kW across a 15 cm (6 inch) air gap. The system relies on a silicon carbide semiconductor and extremely thin copper wire in order to make all this happen, and eliminates the need for any human involvement in the charging process. This might not be too much of a hassle for plugging in an electric car, but for larger vehicles like busses and ferries traditional charging methods often require a robot arm or human to attach the charging cables.

While this technology won’t decrease the amount of time it takes batteries to charge, it will improve the usability of devices like these. Even for cars, this could mean simply pulling into a parking space and getting the car’s battery topped off automatically. For all the talk about charging times of batteries, there is another problem looming which is that plenty of charging methods are proprietary as well. This charger attempts to develop an open-source standard instead.

Thanks to [Ben] for the tip!

Hackaday Links Column Banner

Hackaday Links: March 19, 2023

We get results! Well, sort of. You may recall that in this space last week we discussed Ford’s plans to exclude AM reception on the infotainment systems of certain of their cars starting in 2024. We decried the decision, not for the loss of the sweet, sweet content that AM stations tend to carry — although we always enjoyed “Traffic on the 8s” back in our dismal days of daily commuting — but rather as a safety concern, because AM radio can reach almost the entire US population with emergency information using just 75 stations. To our way of thinking, this makes AM radio critical infrastructure, and eliminating it from motor vehicles is likely to have unintended consequences. Now it seems like there’s some agreement with that position, as former administrators of FEMA (Federal Emergency Management Administration; and no, not FEDRA) have gotten together to warn about the dangers of deleting AM from cars. Manufacturers seem to be leaning into the excuse that EVs emit a lot of radio frequency interference, rendering static-sensitive AM receivers less useful than other, more profitable less susceptible modes, like digital satellite radio. That seems like a red herring to us, but then again, the most advanced infotainment option in any car we’ve ever owned is a CD player, so it’s hard for us to judge.

Continue reading “Hackaday Links: March 19, 2023”