A Machine Shop in A Toolbox: Just Add Time

You don’t need any fancy tools. A CNC machine is nice. A 3D printer can help. Laser cutters are just great. However, when it comes to actually making something, none of this is exactly necessary. With a basic set of hand tools and a few simple power tools, most of which can be picked up for a pittance, many things of surprising complexity, precision, and quality can be made.

Not as pretty, but worked just the same.
Not as pretty, but worked just the same.

A while back I was working on a ring light for my 3D printer. I already had a collection of LEDs, as all hackers are weak for a five-dollar assortment box. So I got on my CAD software of choice and modeled out a ring that I was going to laser cut out of plywood. It would have holes for each of the LEDs. To get a file ready for laser cutting ook around ten minutes. I started to get ready to leave the house and do the ten minute drive to the hackerspace, the ten minutes firing up and using the laser cutter (assuming it wasn’t occupied) and the drive back. It suddenly occurred to me that I was being very silly. I pulled out a sheet of plywood. Drew three circles on it with a compass and subdivided the circle. Under ten minutes of work with basic layout tools, a power drill, and a coping saw and I had the part. This was versus the 40 minutes it would have taken me to fire up the laser cutter.

A lot of the tools we use today were made to win against economies of scale. However, we’re often not doing any of that. We’re building one or two. Often the sheer set-up cost isn’t worth it. Likewise, the skill from being able to do it without the machine will come in handy. There’s an art to using a file properly and getting the expected result. So it’s good to take the time now to practice and develop the manual skills, you never know when you’ll be out trying to do an emergency fit on a part and no one in the area has a single milling machine just sitting around.

So what tools would a hacker need to get the closest to a machine shop without having one or spending too much money? For most needs a person can build a surprising amount of things with nothing more than the following tools.

Basic Metrology: Now if you really want to do precision work you may need more expensive tools, but often we are just spoiled by precision. We can design our parts with a little more wiggle room and just spend the time adjusting them.

  • Calipers – Since they are so cheap now, there is no reason not to own a simple digital or dial caliper. For most work this will be able to measure most things well enough for all practical purposes. Honestly if you’re building something that needs a full metrology suite you’re probably making it hard on yourself. This even goes for production work.
  • Rule – Not a ruler. A steel rule. This will have a ground flat edge and precise graduations. You can use this for layout.

    Chris over at Clickspring is always using the glued paper trick to do some very accurate work.
    Chris over at Clickspring is always using the glued paper trick to do some very accurate work.
  • Square – A carpenter’s combination square can be used for a lot of layout. It’s not as fantastically precise as a real machinists square, but I’ve yet to ever actually need the precision of a real machinist’s square for every day hacking.
  • Compass & Protractor – To be able to layout circles and angles is key. Buy a robust one rather than a nice one. The kind for school children is pretty good.
  • Scribe and Punch- Pencil and Permanent Marker- In lieu of layout fluid a permanent marker is enough to bring out scribed lines on metal. A pencil is great for the rest of the materials. Lastly a punch is essential for drilling holes.
  • Glue stick – With CAD software as amazing and free as it is there’s no reason not to just print out a template and glue it to your part. Contact cement or a simple glue stick is all you need

Working: Next comes working the material itself. Hand working typically happens in two steps. Bulk removal and fine removal. To do the first you need good layout and a bit of experience. To do the second you need even better layout, a godlike amount of patience, a strong back (or a workbench at the right height) and a way to hold the part firmly.

Trust me when I say I've worn out a lot of work gloves and these hold up the longest.
Trust me when I say I’ve worn out a lot of work gloves and these hold up the longest.
  • Stubby Knife (and cut proof gloves) – A knife that lets you get your fingers close to the work, such as an exacto blade or a utility knife. That being said I’m lucky to still have digits with full working ranges. It doesn’t matter how careful you are, it is statistically impossible to not eventually cut yourself with a knife. It then comes down to how damaging that cut will be. Most will hit the flesh of the hand and be relatively harmless, just painful. However, if you hit a tendon say goodbye to full range of motion forever and hello to surgery and picking up an instrument (source: Grew up with an occupational therapist as a parent, that’ll scare the gloves on ya). To that end I highly recommend a good set of kevlar cut-proof gloves. My absolute favorite is the Ansell Blue Nitrile Coated Kevlar HyFlex glove. They’re pricey but they last forever (I would go through five sets of leather gloves in the time it took me to start to see wear on the HyFlex) and give practically normal range of motion and feel for the work.
  • Big File – A coarse bastard file is a must have. If you can only afford one get one with a flat side and a round side. It will be a little difficult not to cut into right angles, but a bit of masking tape or a section of plastic can help with this. Also, the traditional brands like Nicholson can no longer be trusted, do some research before paying more than five bucks for a regular file these days. Only a few brands deliver a long-lasting file. Lastly, watch a few videos on the proper use of a file. If you do it right they’ll cut fast and last a long time.
  • Round File – A round file is useful for a staggering amount of things, but mostly for fitting holes and shaping radii.
  • Little Files – I recommend spending a bit on a nice quality set. One small round, small triangle, and small-D shaped file is a good start. I’d also recommend a small flat file with a safe side for sharpening corners.
  • Japanese Pull Saw – Wood is a great prototyping material and there is no better saw for general woodworking than a Japanese pull saw. If you want to get deeper into the craft then there is a reason for the other saws, but general joints, shaping, etc can be done quickly and precisely with the saw.
  • Hacksaw – A hacksaw can cut through any material as long as you buy the right blade and are willing to sweat. A good hacksaw frame can put a lot of tension on a blade without a lot of added bulk. If it has both a lever action and a thumb screw it is likely to be able to do this. A good hacksaw blade is almost never sold with the frame.

    The metal fabricator's handbook will blow your mind if you've ever wondered how people made armor or hot-rods. It's hard, but technically simple.
    The metal fabricator’s handbook will blow your mind if you’ve ever wondered how people made armor or hot-rods. It’s hard, but technically simple.
  • Coping Saw – Think of a coping saw as a manual laser cutter. There are some nice ones out there, but the blade is the important thing to buy. Weirdly they are getting harder to find these days. I think less people are using them but no shop should be without a coping saw.
  • Plier Set – A set of pliers. Needle Nose, End Cutters, Side Cutters, and Lineman’s is a good place to start.
  • Tongs – I define a tong as any plier that you’re going to heat up. Keep this one separate from your regular pliers. It’s also good for holding something while you beat on it with a hammer. You’ll probably break it eventually.
  • Clamp or Vise – No shop should be without some way of holding a piece firmly. This is one of your most important tools. Really high quality ones usually show up at garage sales or Craigslist; sold by ignorant family members. Look for one that has nice thick jaws and a flat area on the back.
  • Hammer and Scrap Wood – You’d be amazed at the shapes a person can draw out of regular sheet stock with a hammer and scrap wood. This is a must have for the shop. A regular claw hammer and a ball peen are an absolute necessity.

Modern Day Luxuries: There’s no need to stay completely manual though. With Horrible Freight right around the corner or slightly better alternatives for a premium at the home improvement shop there’s no need to to have a few modern luxuries.

A pencil torch and vise come together for a brazing operation.
A pencil torch and vise come together for a brazing operation.
  • Dremel – A cheap rotary tool will make quick work of a lot of shaping tasks. Definitely saves time and there are some things that can’t be done economically without one. Also good for feeding an endless stream of cutting disks into to cut sheet stock without deforming it. Saves time on polishing too if you want to get fancy. Have to be careful not to waste too much time setting-up and forcing this tool to do the work. It’s often considerably underpowered compared to some sweat and hand files.
  • Power Drill and Bits – There is absolutely no reason not to have a decent power drill these days. Get a corded one if you can’t swing the money for a nicer model cordless. This will drill holes, sand, and occasionally act as a shitty lathe. Especially handy if you just want to bring something round into a tolerance for some sort of fit. Get a decent set of drill bits unless you hate yourself. I bought a 30 dollar set with decent coatings and have been replacing the individual bits with their higher quality counterparts as I burn through them. I’m currently on my third 1/8th inch bit.

    Let's be honest. The hobby of 3D printing doesn't really save any time.
    Let’s be honest. The hobby of 3D printing doesn’t really save any time.
  • Pencil Torch – Lastly a good quality torch or pencil torch does wonders. I burned through a few cheaper torches before I finally dropped a hundred dollars on a good quality Portasol. With a torch one can heat treat metals, solder, braze, and more. A person can cut plastics, weld plastics, and shrink heat shrink. It’s an essential tool.

For the rest I wouldn’t go nuts. I’d file them under, “buy as you need”. Of course there are things like screwdrivers etc. but this was intended for shaping operations, not general repair. I would recommend buying, not a tap and die set exactly, but picking a size of fastener (in my case, M3, M6, and M8) and buying the tap, die, and drill set for those.

In the end most prototyping, even today, ends up with a hacker having to still do some 19th century work to get it to fit. However, if you’ve ever seen a real watchmaker at work, you’ll know just how ridiculously far you can get on knowledge of metal backed up by skill with a file.

I know there are a lot of you out there with more and similar experience than I have with this sort of thing. At what point do you resort to modern tools? Any tasks that you found went faster the old-fashioned way? Any tools that I missed? Hand work isn’t a fading skill by any measure, but it’s easy to forget about it with 3D printers as cheap as they are. However, for any technical person it adds instant worth and a far deeper understanding of design and fabrication if you can do it by hand.

Fail Of The Week: My 3D Printer Upgrade

After years of cutting my hands on the exposed threads of my Prusa Mendel i2, it was time for a long overdue upgrade. I didn’t want to just buy a new printer because it’s no fun. So, I decided to buy a new frame for my printer. I settled on the P3Steel, a laser cut steel version of the Prusa i3. It doesn’t suffer from the potential squaring problems of the vanilla i3 and the steel makes it less wobbly than the acrylic or wood framed printers of similar designs.

My trusty i2. Very sharp. It... uh.. grew organically.
My trusty i2. Very sharp. It… uh.. grew organically.

I expected a huge increase in reliability and print quality from my new frame. I wanted less time fiddling with it and more time printing. My biggest hope was that switching to the M5 threaded screw instead of the M8 the i2 used would boost my z-layer accuracy. I got my old printer working just long enough to print out the parts for my new one, and gleefully assembled my new printer.

I didn’t wait until all the electronics were nicely mounted. No. It was time. I fired it up. I was expecting the squarest, quietest, and most accurate print with breathtakingly aligned z-layers. I did not get any of that. There was a definite and visible ripple all along my print. My first inclination was that I was over-extruding. Certainly my shiny new mechanics could not be at fault. Plus, I built this printer, and I am a good printer builder who knows what he’s doing. Over-extruding looks very much like a problem with the Z-axis. So, I tuned my extrusion until it was perfect.

Continue reading “Fail Of The Week: My 3D Printer Upgrade”

Thor’s Hammer Build Recognizes Its Master’s Hand

electromagnetic-thors-hammerOnly those who have completely insulated themselves from modern pop culture will miss the meaning of a Mjolnir build. It is, of course, the mythical hammer wielded by Thor, and only Thor. It’s a question of being worthy; a question solved perfectly by this electromagnetic Mjolnir build.

Using an electromagnet is smart, right? Just plunk the thing down on something metal (that is itself super-heavy or well-anchored) and nobody will be able to pick it up. It starts to get more interesting when you add a fingerprint reader, allowing only Mjolnir’s Master to retrieve it from atop a manhole cover.

But for us the real genius in the build is that the hammer isn’t burning power from the four 12V batteries most of the time. All of the people in the video below could have picked up the hammer had they first nudged it off the metal plate with their foot. The build uses a capacitive touch-sensor to enable and disable the microwave over transformer used as the electromagnet. An engineering trick like this really separates the gods from the posers.

We hate to admit it, but this is probably a cooler build than the Telsa-Coil powered Mjolin that [Caleb] built a few years back. Still, his held up as the best for many years, and if you’re going to be displaced this really is a build worthy of the new title: coolest Mjolnir hack.

Continue reading “Thor’s Hammer Build Recognizes Its Master’s Hand”

Hackaday Links: April 20, 2014


[Josh] hit the same issue we’ve faced before: cable modems don’t match a form factor and usually don’t make themselves easy to mount on something. We could complain about routers as well, but at least most of those have keyhole slots so you can hang them on some screws. Inspiration struck and he fabricated his own rack-mount adapter for it. Velcro holds it in place, with a cutout bezel to see the status lights and an added fan to keep things cool.

Here’s a pair of strange but possibly interesting ones that were sent in separately. The first is an analysis of how much energy short-run CNC prototyping consumes versus traditional manufacturing. The other is an article that [Liz] wrote about getting started with CNC mill bits. She says she compiled all that she learned as she was getting started in the field and wants to save others the effort.

This one goes back several years, but who doesn’t love to hear about a voice-controlled wheelchair?

So you can solder QFN parts but you can’t hammer a nail straight into a piece of wood? The answer, friend, is a laser guided hammer. Someone hire this [Andybot] person, because the solution to the problem shows the ability to out-think an interesting dilemma: how do you put a laser in a hammer head and still use it to hit things?

We’ve seen a lot of these long-range WiFi hacks over the years. This one is worth looking at because of the work done to create an outdoor mount that will stand the test of time.

And finally, we’re still really fond of this 2-bit paper processor that helps you wrap your brain around what’s going on with those silicon wafers that rule our everyday lives. [glomCo] liked it as well, and actually coded an emulator so that you can play with it without printing anything out on paper. We think it takes away some of the fun, but what an excellent programming exercise!