Sharpening Drills Bits the Hard Way

Drill bits are so cheap that when one is too chowdered up to keep working, we generally just toss it out. So you might expect a video on sharpening drill bits to be somewhat irrelevant, but [This Old Tony] makes it work.

The reason this video is worth watching is not just that you get to learn how to sharpen your bits, although that’s an essential metalworker’s skill. Where [This Old Tony]’s video shines is by explaining why a drill bit is shaped the way it is, which he does by fabricating a rudimentary twist drill bit from scratch. Seeing how the flutes and the web are formed and how all the different angles interact to cut material and transport the swarf away is fascinating. And as a bonus, knowing what the angles do allows you to customize a grind for a special job.

[This Old Tony] may be just a guy messing around in his shop, but he’s got a wealth of machine shop knowledge and we always look forward to seeing what he’s working on, whether it’s a homemade fly cutter or a full-blown CNC machine.

Continue reading “Sharpening Drills Bits the Hard Way”

Fail of the Week: Sand Casting Copper

There’s trouble in the Kingdom of Random – the smithies of the realm are having trouble sand-casting copper. And while [King Grant] might not be directly asking for help, we think the Hackaday community might have plenty to say about his efforts.

We’ve all seen plenty of sand casting efforts before, including attempts to make otherwise unobtainable engine parts. And “lost foam” casting, where a model of the part is constructed of polystyrene foam that flashes off when the molten metal is poured, is a relatively new twist on the technique that’s been used to good effect on a recent Gingery lathe build. But most backyard foundries work in aluminum, which is apparently much easier to work with than the copper that [Grant Thompson] is working with. Ironically, his first pour worked the best — not perfect, but at least the islands defining the spokes of his decorative piece didn’t break off and float away as they did in every pour shown in the video below. That leads us to think that the greensand is too dry by the second video. Or perhaps the density of copper just makes it more likely for the sand to float. Maybe a cope and drag mold is in order to keep the islands in place and direct the flow of the copper better.

We know there’s a lot of expertise out there, so sound off in the comments about what you think is going on with these pours.

Continue reading “Fail of the Week: Sand Casting Copper”

Chess Set From Car Parts

Chess has been around for an awfully long time, automobiles less so. However, there’s no reason the two can’t be combined, like in this chess set fashioned from automotive components.

The project was made as a gift, and is the sort of thing that’s quite accessible for an interested maker to attempt at home. Parts used to build the set include valves, valve springs, spark plugs, castellated nuts and pipe fittings. As the parts don’t actually need to be in good working condition, a haul like this could likely easily be had for less than $50 from the local pull-it-yourself wrecking yard — or free if you know a mechanic with some expired engines lying around.

The metalworking side of things involves trimming down and welding together the parts, before polishing them up and applying a coat of paint to create the white and black, or in this case, gold and black pieces.

Overall, it’s a fun weekend project that could be tackled in any number of ways depending on your creativity and taste. For a different take, check out this 3D laser cut chess set.

Custom Workstation Makes Plasma Cutting a Breeze

A plasma cutter is probably top of every metalworker’s short list of dream tools. From freehand curves to long straight cuts, nothing beats a plasma cutter for getting the creative juices flowing. Unfortunately, there’s also the jet of superheated metal blasting through the workpiece to deal with, which is the reason behind this shop-built plasma cutting workstation.

[Regalzack] looks like he had a couple of design goals in mind for his table. A solid work surface isn’t a great idea for plasma cutting, so he designed the top as a grid of replaceable steel slats. Underneath is a hopper to collect the slag, both for neatness and for fire safety. The table top and hopper live on a custom-built wheeled steel frame, and the lower shelf provides plenty of room for his Lincoln 375 plasma rig. With hooks for cables and a sturdy ground clamp tab, the whole thing is a nicely self-contained workstation. The video below shows the build and some of the fabrication techniques [Regalzack] used; we were especially taken by the clever way he cut the slots for the table slats.

Plasma is versatile stuff – you can use it to make music, cook a burger, or decorate wood. And it’s not too shabby for notching metal tubing either.

Continue reading “Custom Workstation Makes Plasma Cutting a Breeze”

The Mother of All Belt Grinders

It seems like everyone is building belt grinders these days. You might think [Jeremy Schmidt] is just hoping on the bandwagon, but you’d be wrong. He took a full two years to design the perfect belt grinder for his needs. Now he’s built his perfect beast, and we must say, it’s quite impressive!

[Jeremy] had seen grinders which can tilt, but most of them tilt the entire machine, including the table. He designed his machine with an independent table. This means the belt can be placed at any angle, while the table remains flat. He’s achieved some really interesting finishes with a course grind on a 45-degree angle to the workpiece.

No build is without its problems. In [Jeremy’s] case it was building the box which acts as a receiver for the machine and the tables. Regular square tube stock wasn’t quite rigid enough, so bar stock was the way to go. The first attempt at building the box resulted in a warped tube, due to the stresses of welding. [Jeremy] was more careful the second time, moving from section to section of the four welds. This kept the heat from building up, and the box stayed straight.

The final result is an incredibly rigid machine which definitely will withstand anything that [Jeremy] can throw at it.

If you want to see more belt grinders at work, check out [Bob]’s treadmill belt grinder, or [Mike’s] conversion.

Continue reading “The Mother of All Belt Grinders”

Building a Metalworking Vise, Layer by Layer

Machine shop wisdom says the lathe is the king of machine tools. We ascribe to that belief, although the common aphorism that the lathe is the only tool that can make copies of itself seems a bit of a stretch. But in the shadow of the almighty lathe is a tool without which even the simplest projects would be vastly more difficult: the lowly vise. Trouble is, finding a good vise can be a tall order. So why not take matters into your own hands and build this very sturdy vise from scratch?

Most commercially available vises are made from a couple of large castings, but as complete as [MakeItExtreme]’s metalworking shop has become, casting molten iron is not a tool in their kit — yet. So they turned back to what they know and welded up the body and jaw of the vise from mild steel. The video below shows the long sessions of welding and grinding that bring the body and the jaw into being, in the process consuming miles of MIG wire. The main screw is cut from stainless steel and threaded with the correct Acme form for such a high load application, especially given the mechanical advantage the long handle provides. The jaws have dovetails for replaceable inserts, too, which is a nice touch that’s hard to find on commercial units.

Vises on Hackaday tend to the lighter duty varieties, such as a 3D-printed vise, the Stickvise for PCBs, or even a fancied-up woodworking vise. It’s nice to see a heavy metal build for a change.

Continue reading “Building a Metalworking Vise, Layer by Layer”

Plasma Cutter Jig Notches Tubing Quickly and Cleanly

It may be [MakeItExtreme]’s most ambitious build to date. There are a lot of moving parts to this plasma cutter tubing notcher, but it ought to make a fine addition to the shop and open up a lot of fabrication possibilities.

We have to admit to a certain initial bafflement when watching the video below for the first time. We can usually see where [MakeItExtreme]’s builds are going right from the first pieces of stock that get cut, but the large tube with the pressed-in bearing had us scratching our heads. The plan soon became clear — a motorized horizontal rotary table with a hollow quill for the plasma torch leads. There’s a jig for holding the torch itself that can move in and out relative to the table. Cams made of tube sections can be bolted to a fixed platen; a cam follower rides on the cams and moves the torch in and out as the table rotates. This makes the cuts needed to properly fit tubes together — known as fish mouth cuts or saddle cuts. The cams can be removed for straight cuts, and the custom pipe vise can be adjusted to make miter cuts.

All in all a sturdy and versatile build that ought to enable tons of new projects, especially when teamed up with [MakeIt Extreme]’s recent roll bender.

Continue reading “Plasma Cutter Jig Notches Tubing Quickly and Cleanly”