Hack Mobile with a Bus Pirate GUI for Your Phone

You need to get an SPI bus on something right now, but you left your laptop at home. No problems, because you’ve got your Bus Pirate and cellphone in your pocket. And a USB OTG cable, because you’re going to need one of those. And some probes. And maybe a soldering iron for tacking magnet wire onto those really small traces. And maybe a good magnifying glass. And…

OK, our fantasy of stepping away from the party for a quick JTAG debugging session is absurd, but what’s not at all absurd is the idea of driving your Bus Pirate from a nice GUI app on your Android phone. [James Newton] wrote DroidScriptBusPirate so that he wouldn’t have to hassle with the Bus Pirate’s nested single-character menu system, and could easily save complete scripts to do common jobs from pleasant menus on his phone.

The setup depends on downloading DroidScript, a free Javascript and HTML5 IDE, and then pasting and saving [James]’ code. He’s written up full instructions to help you with the install. It’s not so hard, and once you’re done you’ll be ready to drive the Pirate from the comfort of your phone.

In fact, now that we think of it, we’re missing a Bus Pirate GUI for our desktop as well. Whenever we have complex tasks, we end up scripting something in Python, but there ought to be something more user-friendly. Anyone know of a good GUI solution?

Free Cell Data Transfer with Slowest Morse Code Ever

Readers of a certain age will remember the payphone trick of letting the phone ring once and then hanging up to get your quarter back. This technique was used with a pre-planned call time to let someone know you made it or you were okay without accruing the cost of a telephone call. As long as nobody answered you didn’t have to pay for the call, and that continues to be the case with some pay-per-minute cellphone plans.

This is the concept behind [Antonio Ospite’s] ringtone data transfer project called SaveMySugar. Don’t judge him, this work has been ongoing for around ten years and started back when cellphone minutes were a concern. We’re just excited to see that he got the excruciatingly slow thing to work.

Those wanting to dig down to the nitty-gritty of the protocol (and you should be one of them) will want to read through the main project page. The system works by dialing the cellphone, letting it ring once, then hanging up. The time between redials determines a Morse code dot, dash, or separation between characters. Because you can’t precisely determine how long it will take each connection to read, [Antonio] built ‘noise’ measurement into the system to normalize variations. The resulting data transfer works quite well. He was able to transfer the word “CODEX” in just six minutes and thirty seconds. But it is automatic, so what do you care? See the edge-of-your-seat-action play out in the video below.

If you can’t stomach that baud, here’s a faster Morse code data transmitter but it doesn’t use the phone.

Continue reading “Free Cell Data Transfer with Slowest Morse Code Ever”

NFC Tags Add Old-School Functionality to New Phone

Back in the day, we had smartphones with physical buttons. Not just power, volume, and maybe another button on the front. Whole, slide-out QWERTY keyboards right on the underside of the phone. It was a lawless wasteland, but for those who yearn for the wild-west days of the late 2000s, [Liviu] has recreated the shortcut buttons that used to exist on the tops of these keyboards for modern-day smartphones.

There were lots of phones that had shortcut keys on their keyboards, but [Liviu] enjoyed using the ones that allowed him to switch between applications (or “apps” as the kids are saying these days) such as the calendar, the browser, or the mail client. To recreate this, he went with a few NFC tags. These devices are easily programmed via a number of apps from your app store of choice, and can be placed essentially anywhere. In order to make them visible to the phone at any time, though, he placed the tags inside a clear plastic case for his phone and can now use them anytime.

If you’ve never used or programmed an NFC tag, this would be a great project to get yourself acquainted with how they operate. Plus, you could easily upgrade this project to allow the tags to do any number of other things. You can take projects like this as far as you want.

Continue reading “NFC Tags Add Old-School Functionality to New Phone”

Hackaday Prize Semifinalist: An Open Smartphone

One of the biggest trends in DIY electronics, both now and fifty years ago, is creating at home what is usually made in a factory. Fifty years ago, this meant radios and amplifiers. Today, this means smartphones. It used to be the case that you could pull out a Heathkit catalog and find kits for every electronic gadget imaginable. There are no kits for DIY smartphones.

For [Gerard]’s entry for The Hackaday Prize, he’s tapping into the spirit of the decades-old DIY movement and building his own cell phone. He’s calling it the libresmartphone, and it’s able to make calls and send emails, just like any other portable, pocketable computer.

The libresmartphone is built around a Raspberry Pi, with a large battery, HDMI display with touchscreen, and a GSM and GPS module rounding out the build. He’s also rolling his own software to make calls, read SMS, and take a peek into some of the phone’s hardware, like the charge state of the battery.

[Gerard]’s libresmartphone is one of the purest examples of modern DIY electronics you’ll find; it’s not about building something from a kit, but instead building something that’s needed out of the parts he has on hand. That’s the purest example of the DIY movement, and a great entry to this year’s Hackaday Prize.

The 2015 Hackaday Prize is sponsored by:

New Smartphone Case Brings Back Old Smartphone Features

We all remember the good ol’ days when smartphones were just getting started. Realizing that we could take a fully functional computer and shove it into something the size of a phone was pretty revolutionary. Some of the early phones like the original Motorola Droid had some features that just aren’t very common today, and [liviu] set out to fix this situation by adding a sliding QWERTY keyboard to his modern smartphone.

The build started with a Samsung Galaxy Note 4 and two cases: one for the phone and one for the keyboard. [liviu] found a small phone-sized bluetooth keyboard and removed all of the unnecessary bits before shoehorning it into the case. He then built the sliding mechanism from parts out of a PC power supply and two old flip phones and then was able to piece the two halves together. Using the two flip phone hinges gave this case the additional feature of being able to flip up after sliding out. The result is a modern smartphone with a fantastic and classic smartphone twist that looks very useful.

We’ve featured projects that give new life to old smartphones, but this might be the first to give old life to a new smartphone. We wouldn’t mind seeing more flagship phones that come with these features, but [liviu] has done a great job of making up for the manufacturers’ shortcomings!

Continue reading “New Smartphone Case Brings Back Old Smartphone Features”

Hackaday Prize Entry: A DIY Smartphone

It may not change the world, but [Tyler]’s DIY smartphone is a great example of what you can do with off-the-shelf parts. He built a complete, working cell phone using a Raspberry Pi, a few parts from Adafruit, and a 3D printed enclosure.

Inside the Tyfone is a Raspberry Pi Model A, an Adafruit FONA cellular module, a PiTFT, and not much else. There’s a 1200 mAh battery in there, and a 3D printed case keeps everything together.

For the OS, [Tyler] isn’t running Android; that’s only for the Raspi 2, and the Raspberry Pi 2 Model A isn’t out yet. Instead, [Tyler] wrote his own not-OS in Python. It can send and receive SMS messages, make calls, take pictures, connect to WiFi networks, and do just about everything else a Nokia from 2003 can do.

[Tyler] put together a video going over all of the features of his Tyfone. You can check that out below.


The 2015 Hackaday Prize is sponsored by:

Continue reading “Hackaday Prize Entry: A DIY Smartphone”

DIY iPhone Mount for a Volvo

[Seandavid010] recently purchased a 2004 Volvo. He really liked the car except for the fact that it was missing some more modern features. He didn’t come stock with any navigation system or Bluetooth capabilities. After adding Bluetooth functionality to the stock stereo himself, he realized he would need a secure location to place his iPhone. This would allow him to control the stereo or use the navigation functions with ease. He ended up building a custom iPhone mount in just a single afternoon.

The key to this project is that the Volvo has an empty pocket on the left side of the stereo. It’s an oddly shaped vertical pocket that doesn’t seem to have any real use. [Seandavid010] decided this would be the perfect place to mount his phone. The only problem was that he didn’t want to make any permanent changes to his car. This meant no drilling into the dash and no gluing.

[Seandavid010] started by lining the pocket with blue masking tape. He then added an additional lining of plastic wrap. All of this was to protect the dashboard from what was to come next. He filled about half of the pocket with epoxy putty. We’ve seen this stuff used before in a similar project. He left a small opening in the middle with a thick washer mounted perpendicular to the ground. The washer would provide a place for an off-the-shelf iPhone holder to mount onto. [Seandavid010] also placed a flat, wooden paint stirrer underneath the putty. This created a pocket that would allow him to route cables and adapters underneath this new mount.

After letting the epoxy putty cure for an hour, he removed the block from the pocket. The stick was then removed, and any gaps were filled in with putty. The whole block was trimmed and smooth down for a more streamlined look. Finally, it was painted over with some flat black spray paint to match the color of the dashboard. An aftermarket iPhone holder allows [Seandavid010] to mount his cell phone to this new bracket. The cell phone holder allows him to rotate the phone into portrait or landscape mode, and even is adjustable to accommodate different sized phones.