Don’t Try This at Home is Cliché for a Reason

Oh, for cryin’ out loud. That’s the last straw. We’ve seen one dangerous YouTube video too many. Are we honestly cursed with a false feedback system that unequitably rewards dangerous behavior in online videos? Obviously the answer is ‘yes’. Now the real question becomes, can we do anything about it?

Professional Driver on a Closed Course

Marketing is all about putting something in front of a consumer and getting their brain to go “awesome!”. The fast, loud, shiny, burny, and sharp things are all on the table for that task. It’s the primal part of your brain that gives you jolt, as if your amygdala forgot how to run from sabertooths (saberteeth?) and learned how to like and subscribe.

Back in the day, people were hurt and even killed when replicating stunts they saw done on television. To protect from litigation, companies started adding disclaimers — Don’t Try this at Home or my favorite: Professional Driver on a Closed Course.

But the thing is, commercials are big business. If someone gets hurt, there’s money to be had by assigning blame in a court of law. When the ability to produce and distribute video content was democratized by the coming of the Internet we lost those warnings and the common sense that went with them.

Going way back to this remote-control-a-real-car hack in 2009 I haven’t been able to shake the lack of consideration for danger in a project like this. I included it in the title, which ends with “(dangerously)”. While I wasn’t taken to task in the comments for that title, I have been chided for advocating for things as controversial as helmets when strapping your body to a moving object. Do a Ctrl-F on “helmet” in this article to see what I mean.

The people pulling off these hacks were doing it because it felt awesome and they wanted to document how that felt. They weren’t stars, they were hackers and the world mostly ignored them except in places like Hackaday. We might debate the lack of safety measures but most assumed anyone with skills to do this would take a beat to consider the risks. This was probably a false assumption.

It’s All About the Subs

Things have gotten worse since then. I can’t blame all of this on YouTube, but I’m going to try. One day, YouTube changed everything. They put together a perfect mix of easy uploading, great discoverability, and (most importantly) advertising revenue sharing. For some people, this became a business and not just a way to connect with the rest of the hacker community.

This is the rise of the subscriber base. It’s a vicious cycle — you need more people to like and subscribe so that their influence will push your channel to more people to like and subscribe. The problem is, the fastest way to this is that tricky amygdala again. For some, this is being funny, but for others this is speed, fireballs, and loud bangs, with no regard for life, limb, or eyeball.

We’re Far From Blameless

I like fireballs and fast cars as much as the next person. And we’ve certainly run a lot of articles on the escalatingly dangerous hacks out there for all to see. For instance, we’ve covered several hacks from [kreosan], like microwaving things outside of a microwave and then building a microwave gun.

Pyro Build
Short sleeves and flamethrowers. What could go wrong?

But even the more mainstream content appears to be getting more and more dangerous. Our beloved [Colin Furze] is guilty of dangerous behavior. Not only did he burn himself testing a jet engine out without any safety gear, but turned the aftermath into another ad-supported video.

Which brings me to the straw that broke the camel’s back. Here’s a hack that’s based on the idea of hurting people. It’s what is (luckily) a crappy robot designed to recognize faces and shine lasers into any eyes it detects. Literally it’s conceived to shoot your eyes out. It’s using a red laser that likely won’t cause eye damage unless you intentionally stare into it without blinking, but that’s not discussed in the video, and someone who doesn’t know better replicating this with a different laser could easily cause irreparable damage to their sight.

Rocket Scientists Use Common Sense and So Should You

I was going to use the heading “This Isn’t Rocket Science”, but you don’t see rocket scientists testing new engine designs by lighting a fuse as they run away giggling in short sleeves and flip-flops. Those brilliantly intelligent people are tucked safely in a bunker at a safe distance with their hands hovering over the emergency kill switch as fire fighting equipment hangs out at arms reach. Rocket scientists know a lot about safety and so should you.

This is simple. We don’t have to invent anything to add safety to our hacks. Use common sense. Dress appropriately for your demo — as the situation dictates use reasonable fire-resistant clothing, helmet, etc. Wear protective glasses, laser spec’d goggles, and ear plugs; each whenever called for. Take fumes and particulates seriously and wear respiratory gear. Keep a fire extinguisher around. And if you’re making a video or posting images about it — which you should definitely do — snap a picture or give us a quick video cut to the safety precautions you’ve chosen.

I still want to see awesome projects on YouTube. But I also want to see the trend towards danger for clicks stopped. Let’s do dangerous stuff safely. And let’s be conspicuous about those safety measures. That combination is truly awesome.

Now get off my lawn, and wear your seat belt while doing so.

The Shocking Truth About Transformerless Power Supplies

Transformerless power supplies are showing up a lot here on Hackaday, especially in inexpensive products where the cost of a transformer would add significantly to the BOM. But transformerless power supplies are a double-edged sword. That title? Not clickbait. Poking around in a transformerless-powered device can turn your oscilloscope into a smoking pile or get you electrocuted if you don’t understand them and take proper safety precautions.

But this isn’t a scare piece. Transformerless designs are great in their proper place, and you’re probably going to encounter one someday because they’re in everything from LED lightbulbs to IoT WiFi switches. We’re going to look at how they work, and how to design and work on them safely, because you never know when you might want to hack on one.

Here’s the punchline: transformerless power supplies are safely useable only in situations where the entire device can be enclosed and nobody can accidentally come in contact with any part of it. That means no physical electrical connections in or out — RF and IR are fair game. And when you work with one, you have to know that any part of the circuit can be at mains voltage. Now read on to see why!

Continue reading “The Shocking Truth About Transformerless Power Supplies”

The Importance of Electrical Safety

Everything you do bears some risk of getting you hurt or killed. That’s just the way life is. Some people drown in the bath, and others get kilovolt AC across their heart. Knowing the dangers — how drastic and how likely the are — is the first step toward mitigating them. (We’re not saying that you shouldn’t bathe or play with high voltages.)

This third chapter of an e-book on electronics is a good read. It goes through the physiology of getting shocked (DC is more likely to freeze your muscles, but AC is more likely to fibrillate your heart) and the various scenarios that you should be looking out for. There’s a section on safe practices, and safe circuit design. It’s the basics, but it’s also stuff that we probably should have known when we started messing around with electrons in bulk.

Continue reading “The Importance of Electrical Safety”

Brake Light Blinker Does It with Three Fives

Sometimes you use a Raspberry Pi when you really could have gotten by with an Arudino. Sometimes you use an Arduino when maybe an ATtiny45 would have been better. And sometimes, like [Bill]’s motorcycle tail light project, you use exactly the right tool for the job: a 555 timer.

One of the keys of motorcycle safety is visibility. People are often looking for other cars and often “miss” seeing motorcyclists for this reason. Headlight and tail light modulators (circuits that flash your lights continuously) are popular for this reason. Bill decided to roll out his own rather than buy a pre-made tail light flasher so he grabbed a trusty 555 timer and started soldering. His circuit flashes the tail light a specific number of times and then leaves it on (as long as one of the brake levers is depressed) which will definitely help alert other drivers to his presence.

[Bill] mentions that he likes the 555 timer because it’s simple and bulletproof, which is exactly what you’d need on something that will be attached to a motorcycle a be responsible for alerting drivers before they slam into you from behind.

We’d tend to agree with this assessment of the 555; we’ve featured entire 555 circuit contests before. His project also has all of the tools you’ll need to build your own, including the files to have your own PCB made. If you’d like inspiration for ways to improve motorcycle safety in other ways, though, we can suggest a pretty good starting point as well.

PSA: Don’t Let Kids Eat Lithium Batteries

We get a lot of press releases at Hackaday, but this one was horrific enough that we thought it was worth sharing. Apparently, some kids are accidentally eating lithium coin cell batteries. When this happens with bigger cells, usually greater than 20 millimeters (CR2032, CR2025, and CR2016) really bad things happen. Like burning esophaguses, and even death.

The National Capital Poison Center has done some research on this, and found that 14% of batteries swallowed over the past two years came from flameless candles like the ones above. We know some of our readers also deal with batteries in open trays, which are apparently pretty dangerous for children.

The National Capital Poison Center’s website has an entire page dedicated to battery safety, which is probably worth a read if you deal with batteries and small children on a regular basis. Should an incident occur, there’s even a hotline to call for assistance.

So, please, don’t swallow batteries, or let children put them in their mouths. After the break, a Canadian PSA song about not putting things in your mouth.

Continue reading “PSA: Don’t Let Kids Eat Lithium Batteries”

Hack Safely: Fire Safety in the Home Shop

Within the past two months we’ve covered two separate incidents of 3D printing-related fires. One was caused by an ill-advised attempt to smooth a print with acetone heated over an open flame, while the other was investigated by fire officials and found to have been caused by overuse of hairspray to stick prints to the printer bed. The former was potentially lethal but ended with no more than a good scare and a winning clip for “Hacking’s Funniest Home Videos”; the latter tragically claimed the life of a 17-year old lad with a lot of promise.

In light of these incidents, we here at Hackaday thought it would be a good idea to review some of the basics of fire safety as they relate to the home shop. Nowhere was this need made clearer than in the comments section on the post covering the fatal fire. There was fierce debate about the cause of the fire and the potential negative effect it might have on the 3D-printing community, with comments ranging from measured and thoughtful to appallingly callous. But it was a comment by a user named [Scuffles] that sealed the deal:

“My moment of reflection is that it’s well past time I invest in a fire extinguisher for my workstation. Cause right now my fire plan pretty much consists of shouting obscenities at the blaze and hoping it goes out on its own.”

Let’s try to come up with a better plan for [Scuffles] and for everyone else. We’ll cover the basics: avoidance, detection, control, and escape.

Continue reading “Hack Safely: Fire Safety in the Home Shop”

Self-Driving Cars Are Not (Yet) Safe

Three things have happened in the last month that have made me think about the safety of self-driving cars a lot more. The US Department of Transportation (DOT) has issued its guidance on the safety of semi-autonomous and autonomous cars. At the same time, [Geohot]’s hacker self-driving car company bailed out of the business, citing regulatory hassles. And finally, Tesla’s Autopilot has killed its second passenger, this time in China.

At a time when [Elon Musk], [President Obama], and Google are all touting self-driving cars to be the solution to human error behind the wheel, it’s more than a little bold to be arguing the opposite case in public, but the numbers just don’t add up. Self-driving cars are probably not as safe as a good sober driver yet, but there just isn’t the required amount of data available to say this with much confidence. However, one certainly cannot say that they’re demonstrably safer.

Continue reading “Self-Driving Cars Are Not (Yet) Safe”