PassivDom: Mobile Homes for Millenials

In many parts of the world, living in a trailer has gained a social stigma. We’re talking about a rectangular building placed on three wheels and towed to your preferred plot of land. It’s going to take a lot to break that social stigma, but this is a pretty sweet attempt.

PassivDom is an off-grid home. It sidesteps the electrical grid as well as water and sewer service. It’s marketed as utilizing revolutionary breakthrough in wall insulation which they claim makes it very easy to heat and cool. In addition to this self-sustaining angle, it taps into the tiny home movement with a footprint of just 36 m2 (4 m by 9 m; about 118 390 ft2 or 13′ by 30′).

For this to make sense you really need to get the “Autonomous” model, the only one that is designed for “off-grid” living and comes with solar panels and battery storage plus water storage and purification. That’ll set you back 59,900 € (about $63,461 USD) but hey, it does come with “high quality minimalistic furniture” which the best way we can think of to serve Ikea nesting instinct without saying the brand name. Yep, this ticks all the “marketing to millennials” boxes. We’re kind of surprised it’s not doing crowdfunding.

So where’s the hack? Obviously this is a hard sell at 1,664 €/m($538 $163/ft2). A project of this size and scope is well within the purview of a single, motivated hacker, and arguably a weekend project for a well-skilled team from a hackerspace. Tiny Houses started as a build-it yourself so that’s already solved. We’ve seen what it takes for hackers to add solar to their RVs, and experiments in home-built power walls. Water storage and purification is already solved and quite affordable at the home store.

Has anyone built their own off-grid tiny house? If so, let us know what went into it. If not, what are you waiting for?

Solar-Powered Prosthetic Skin

One of the biggest problems for prosthetic users is feel. If you’ve ever tried to hold a pen and write with a numb hand, you’ve realised how important feedback is to the motor control equation. Research is ongoing to find ways to provide feedback from prosthetic limbs, in even a basic format.  The human nervous system is a little more complex than just interfacing with the average serial UART. One of the requirements of many feedback systems is power, which usually would involve bulky batteries or some form of supercapacitors, but a British team has developed a way to embed solar cells in a touch-sensitive prosthetic skin.

The skin relies on everyone’s favourite material of the minute, graphene. A thin layer of graphene allows the prosthetic to feed signals back to the user of both temperature and contact pressure. The trick is that the graphene skin is incredibly transparent, reportedly allowing 98% of light on its surface to pass through. It’s then a simple matter of fitting solar panels beneath this skin, and the energy harvested can then be used to power the sensor system.

The team does admit that some power storage will later be required, as it would be difficult for any prosthetic user if their limbs lost all feedback when they walked into a dark room. The idea of one’s arm losing all feeling upon going to bed isn’t particularly appealing. Check out the paper here (paywalled). Video below the break.
We see a lot of great prosthetic projects cross our desk here at Hackaday – like this 3D printed prosthetic hand. Prosthetics definitely matter, so why not build your own and enter it in the 2017 Hackaday Prize?

Continue reading “Solar-Powered Prosthetic Skin”

Tiny Electric Motor Runs on Power from an LED

If you were not aware, LEDs can also work in reverse: they deliver tiny amounts of current, in the microamp range, when illuminated. If you look on YouTube you can find several videos of solar panels built with arrays of LEDs, but powering an electric motor with a single 3 mm LED is something that we’ve never seen before. [Slider2732] built a small electric motor that happily runs from a green LED in sunlight.

The motor uses four coils of 1,000 ohms each. Using coils with many turns of very fine wire helps to draw less current while keeping an appropriate magnetic field for the motor to run. To keep friction at a minimum, the rotor uses a needle that hangs from a magnet. Four neodymium magnets around the rotor are periodically pushed by the coils, generating rotation. A simple two-transistor circuit takes care of the synchronization and yes, the motor does run on the four microamps provided by the LED, and runs pretty well.

Building motors is definitely an enjoyable activity, these small pulse motors can be built in just a couple of hours. You can use coils with just a few tens of turns which are much more easy to make but of course you will need something more than four microamps! The nice part of making an ultralow current motor like this is that it can run for a very long time on a tiny battery or even a capacitor, we invite you to try building one.

Continue reading “Tiny Electric Motor Runs on Power from an LED”

A Solar-Powered Headset From Recycled Parts

Solar power has surged ahead in recent years, and access for the individual has grown accordingly. Not waiting around for a commercial alternative, Instructables user [taifur] has gone ahead and built himself a solar-powered Bluetooth headset.

Made almost completely of recycled components — reducing e-waste helps us all — only the 1 W flexible solar panel, voltage regulator, and the RN-52 Bluetooth module were purchased for this project. The base of the headset has been converted from [taifur]’s old wired one, meanwhile a salvaged boost converter, and charge controller — for a lithium-ion battery — form the power circuit. An Apple button makes an appearance alongside a control panel for a portable DVD player (of all things), and an MP4 player’s battery. Some careful recovery and reconfiguration work done, reassembly with a little assistance from the handyman’s secret weapon — duct tape — and gobs of hot glue bore a wireless fruit ready to receive the sun’s bounty.

Continue reading “A Solar-Powered Headset From Recycled Parts”

Solar Controller Reverse Engineered In Both Directions

[Jared Sanson] has a solar power setup on his beach house, consisting of 6 panels and a 24V battery bank, supplied by Outback Inc. Their chargers and inverters pair over a seemingly proprietary connection with a controller known as the MATE. The MATE has a standard serial output which gives some details about the operation, but [Jared] wasn’t getting the detailed information they could get from the controller’s screen. This meant it was time to reverse engineer the proprietary connection instead, which [Jared] calls MateNET.

The controller interfaces with the chargers over a Cat5 cable. [Jared] initially suspected RS-485, but it turned out to be regular serial at 0-24V logic levels, at 9600 baud, 9n1. To figure out the pinout, [Jared] went through the MATE circuitry with a fine-toothed comb, discovering an ATMEGA32. Since both the MATE’s user output & its connection to the other equipment are both serial, a logic mux is used to split the ATMEGA32’s single UART between the two serial connections. With the physical layer sorted, it was time to figure out how the protocol worked.

Continue reading “Solar Controller Reverse Engineered In Both Directions”

Get Ready for the Great Eclipse of 2017

On August 21, 2017, the moon will cast its shadow across most of North America, with a narrow path of totality tracing from Oregon to South Carolina. Tens of millions of people will have a chance to see something that the continental US hasn’t seen in ages — a total eclipse of the sun. Will you be ready?

The last time a total solar eclipse visited a significantly populated section of the US was in March of 1970. I remember it well as a four-year-old standing on the sidewalk in front of my house, all worked up about space already in those heady days of the Apollo program, gazing through smoked glass as the moon blotted out the sun for a few minutes. Just watching it was exhilarating, and being able to see it again and capitalize on a lifetime of geekiness to heighten the experience, and to be able to share it with my wife and kids, is exciting beyond words. But I’ve only got eight months to lay my plans! Continue reading “Get Ready for the Great Eclipse of 2017”

Off-Grid Travel — Setting Up a Solar System

When you’re living out of a vehicle, or even just traveling out of one, power quickly becomes a big concern. You need it for lights, to charge your various devices, to run your coffee maker and other appliances, and possibly even to store your food if you’ve got an electric refrigerator. You could do what many RV owners do: rely on campgrounds with electrical hookups plus a couple of car batteries to get you from one campground to the next. But, those campgrounds are pricey and often amount to glorified parking lots. Wouldn’t it be better if you had the freedom to camp anywhere, without having to worry about finding somewhere to plug in?

That’s exactly what we’re going to be covering in this article: off-grid power on the road. There are two major methods for doing this: with a portable gas generator, or with solar. Gas generators have long been the preferred method, as they provide a large amount of power reliably. However, they’re also fairly expensive, cumbersome, noisy, and obviously require that you bring along fuel. Luckily, major advances in solar technology over the past decade have made it very practical to use solar energy as your sole source of electricity on the road.

Continue reading “Off-Grid Travel — Setting Up a Solar System”