Howto: Docker, Databases, And Dashboards To Deal With Your Data

So you just got something like an Arduino or Raspberry Pi kit with a few sensors. Setting up temperature or motion sensors is easy enough. But what are you going to do with all that data? It’s going to need storage, analysis, and summarization before it’s actually useful to anyone. You need a dashboard!

But even before displaying the data, you’re going to need to store it somewhere, and that means a database. You could just send all of your data off into the cloud and hope that the company that provides you the service has a good business model behind it, but frankly the track records of even the companies with the deepest pockets and best intentions don’t look so good. And you won’t learn anything useful by taking the easiest way out anyway.

Instead, let’s take the second-easiest way out. Here’s a short tutorial to get you up and running with a database backend on a Raspberry Pi and a slick dashboard on your laptop or cellphone. We’ll be using scripts and Docker to automate as many things as possible. Even so, along the way you’ll learn a little bit about Python and Docker, but more importantly you’ll have a system of your own for expansion, customization, or simply experimenting with at home. After all, if the “cloud” won’t let you play around with their database, how much fun can it be, really?

Continue reading “Howto: Docker, Databases, And Dashboards To Deal With Your Data”

The Vectrex Projector We’ve Been Waiting For

Unlike most old consoles, the Vectrex is unique for having a vector-based display. This gives it a very different look to most of its contemporaries, and necessitated a built-in display, as regular televisions aren’t built to take vector signals. Not one to be limited to the stock screen size, [Arcade Jason] decided the Vectrex needed a projection upgrade, and built exactly that.

The build relies on a lens that [Jason] salvaged from an old rear-projection TV. These units used CRTs with big lenses which projected the image onto a screen. That’s precisely what is happening here, with a vector display replacing the CRT used in the original TV. The vector display itself used here is a tube from a small black and white TV set, which [Jason] modified to use a Vectrex yoke, making it capable of vector operation.

Through some modification and careful assembly, [Jason] was rewarded with a wall-sized display for his Vectrex console. This is demonstrated with some beautiful glowing vector demos, accompanied with appropriate bleep-bloop music, as was the style at the time. The Cantina band is a particular highlight.

We’ve seen [Jason]’s vector hacks before, too – like this Asteroids machine modified to display in color. Video after the break.

Continue reading “The Vectrex Projector We’ve Been Waiting For”

The Short And Tragic Story Of Life On The Moon

The Moon is a desolate rock, completely incapable of harboring life as we know it. Despite being our closest celestial neighbor, conditions on the surface couldn’t be more different from the warm and wet world we call home. Variations in surface temperature are so extreme, from a blistering 106 C (223 F) during the lunar day to a frigid -183 C (-297 F) at night, that even robotic probes struggle to survive. The Moon’s atmosphere, if one is willing to call the wispy collection of oddball gasses including argon, helium, and neon at nearly negligible concentrations an atmosphere, does nothing to protect the lunar surface from being bombarded with cosmic radiation.

Von Kármán Crater

Yet for a brief time, very recently, life flourished on the Moon. Of course, it did have a little help. China’s Chang’e 4 lander, which made a historic touchdown in the Von Kármán crater on January 3rd, brought with it an experiment designed to test if plants could actually grow on the lunar surface. The device, known as the Lunar Micro Ecosystem (LME), contained air, soil, water, and a collection of seeds. When it received the appropriate signal, LME watered the seeds and carefully monitored their response. Not long after, Chinese media proudly announced that the cotton seeds within the LME had sprouted and were doing well.

Unfortunately, the success was exceptionally short-lived. Just a few days after announcing the success of the LME experiment, it was revealed that all the plants which sprouted had died. The timeline here is a bit hazy. It was not even immediately clear if the abrupt end of the LME experiment was intentional, or due to some hardware failure.

So what exactly do we know about Chang’e 4’s Lunar Micro Ecosystem, and the lifeforms it held? Why did the plants die? But perhaps most importantly, what does all this have to do with potential future human missions to that inhospitable rock floating just a few hundred thousand kilometers away from us?

Continue reading “The Short And Tragic Story Of Life On The Moon”

Adventures In Photopolymers With Ben Krasnow

There is a technology that will allow you to add inks, resins, and paints to any flat surface. Screen printing has been around since forever, and although most of the tutorials and guides out there will tell you how to screen print onto t-shirts, [Ben Krasnow] had the idea of putting patterns of paint on acrylic, metal, or even ITO glass for electroluminescent displays. With screen printing, the devil is in the details, but lucky enough for all of us, [Ben] figured everything out and is sharing his knowledge with us.

The ten thousand foot view of screen printing is simple enough — put some ink on a screen that has some photoemulsion, and squeegee it through onto a t-shirt. While this isn’t wrong, there’s a lot of technique, and things will go wrong if this is your first time doing it. Screens are easy, and the best way to get those is by buying a pre-stretched frame. The photoemulsion is a bit different. The old way of applying a photoemulsion is by squeegeeing it on with a bizarre tool. It’s almost impossible to get a thin consistent layer with this technique, so [Ben] recommends just buying some photoemulsion film.

Once the photoemulsion is on the screen and dry, you need to put an image on this. The photoemulsion cures hard with UV, so the traditional technique is using transparency (actually, the real old-school way is using a camera obscura…). Transparency sheets for laser printers work, but 30-lb vellum is actually more transparent to UV light than clear acetate sheets. This is then applied print side down to the dry screen, and believe me when I say this is the most important part. You will not get a good screen print if there is not direct contact between your photomask and your photoemulsion. This is so important, it may be worth considering some experiments in vinyl cutting to create the photomask.

With the screen developed, it’s simply a matter of globbing on some ink and pressing it onto a piece of acrylic. [Ben] used regular oil paints, an unmixed artists’ oil paint, and the professional solution, epoxy-based screenprinting paint. By far, the epoxy paint gave the best finish, but it’s a stinky mess that is nearly impossible to clean.

With a somewhat successful screenprinting setup, what will [Ben] be able to do? Well, he’s been working on electroluminescent displays, and the first EL displays were screenprinted anyway. More than that, you could use screen printing to create a resist for copper etching for creating your own PCBs. There’s a lot you can do when you can put epoxy down in a thin layer, like make a blockchain of Tide pods, and this is the best tutorial we’ve ever seen on using photoemulsions.

Continue reading “Adventures In Photopolymers With Ben Krasnow”

Crisp Clean Shortcuts

People always tell us that their favorite part about using a computer is mashing out the exact same key sequences over and over, day in, day out. Then, there are people like [Benni] who would rather make a microcontroller do the repetitive work at the touch of a stylish USB peripheral. Those people who enjoy the extra typing also seem to love adding new proprietary software to their computer all the time, but they are out of luck again because this dial acts as a keyboard and mouse so they can’t even install that bloated software when they work at a friend’s computer. Sorry folks, some of you are out of luck.

Rotary encoders as computer inputs are not new and commercial versions have been around for years, but they are niche enough to be awfully expensive to an end-user. The short BOM and immense versatility will make some people reconsider adding one to their own workstations. In the video below, screen images are rotated to get the right angle before drawing a line just like someone would do with a piece of paper. Another demonstration reminds of us XKCD by cycling through the undo and redo functions which gives you a reversible timeline of your work.

If you like your off-hand macro enabler to have more twists and buttons, we have you covered, or maybe you only want them some of the time.

Continue reading “Crisp Clean Shortcuts”

The Xerox Star On A Desktop Near You

It is 1980-something and you see someone typing on a keyboard. The display is graphical, and they use a mouse to finish a document, send it over the network to another similar computer, where another user edits it a bit and prints it on a laser printer. Given the time-frame you might think the computer is a Mac, but you’d be wrong. The Xerox Star had all the features Apple “invented” about three years before the Macintosh arrived. If you never heard of the Star, that’s not surprising. At $16,500 each, there were only about 25,000 sold. Your chances of finding a working one now are slim, but thanks to emulation created by [Josh Dersch] you can try the Star out on your hardware today. If you want a preview, have a look at the 1982 video, below.

The machine had a surprisingly complex architecture. The main CPU was a microcoded computer with multiple registers that would run a sort of microcode program to execute different instruction sets depending on what was running. In addition, there was an intel 8085 that loaded the right microcode and serviced the keyboard, the mouse, the floppy, and the serial ports.

Continue reading “The Xerox Star On A Desktop Near You”

Understanding Modulated RF With [W2AEW]

There was a time — not long ago — when radio and even wired communications depended solely upon Morse code with OOK (on off keying). Modulating RF signals led to practical commercial radio stations and even modern cell phones. Although there are many ways to modulate an RF carrier with voice AM or amplitude modulation is the oldest method. A recent video from [W2AEW] shows how this works and also how AM can be made more efficient by stripping the carrier and one sideband using SSB or single sideband modulation. You can see the video, below.

As is typical of a [W2AEW] video, there’s more than just theory. An Icom transmitter provides signals in the 40 meter band to demonstrate the real world case. There’s discussion about how to measure peak envelope power (PEP) and comparison to average power and other measurements, as well.

Continue reading “Understanding Modulated RF With [W2AEW]”