Glia Is Making Open Medical Devices, And You Can Help

The Glia project aims to create a suite of free and open-source medical equipment that can be assembled cheaply and easily when and where it’s needed. Even essential tools like stethoscopes and tourniquets can be difficult to acquire in certain parts of the world, especially during times of war or civil unrest. But armed with a 3D printer and the team’s open-source designs, an ad-hoc factory can start producing these lifesaving tools anywhere on the planet.

Glia member [Tarek Loubani] has recently written a blog post discussing the team’s latest release: an otoscope that can be built for as little as $5. Even if you don’t recognize the name, you’ve almost certainly seen one of them in use. The otoscope is used to look inside the ear and can be invaluable in diagnosing illnesses, especially in children. Unfortunately, while this iconic piece of equipment is quite simple on a technical level, professional-quality versions can cost hundreds of dollars.

Now to be fair, you’ll need quite a bit more than just the 3D printed parts to assemble the device. The final product requires some electrical components such as a battery holder, rocker switch, and LED. It also requires a custom lens, though the Glia team has thought ahead here and provided the files for printable jigs that will allow you to cut a larger lens down to the size required by their otoscope. In a situation where you might have to improvise with what you have, that’s a very clever design element.

So far the team is very happy with how the otoscope performs, but they’ve run into a bit of a logistical snag. It turns out that early work on the project was done in the web-based TinkerCAD, which isn’t quite in line with the team’s goals of keeping everything free and open. They’d like some assistance in recreating the STLs in FreeCAD or OpenSCAD so they’re easier to modify down the road. So if you’re a FOSS CAD master and want to earn some positive karma, head over to the GitHub page for the project and put those skills to use.

We’ve previously covered Glia’s work with 3D printed tourniquets to treat gunshot wounds, a project that led to [Tarek] himself being shot by a sniper while attempting to field test the design in Gaza. If that’s not commitment to the principles of open-source hardware, we don’t know what is.

Continue reading “Glia Is Making Open Medical Devices, And You Can Help”

Lead Former Makes LED Cubes A Little Easier To Build

There’s no doubting the allure of a nicely crafted LED cube; likewise, there’s no doubting that they can be a tremendous pain to build. After all, the amount of work scales as the cube of the number of LEDs you want each side to have, and let’s face it – with LED cubes, the bigger, the better. What to do about all that tedious lead forming?

[TylerTimoJ]’s solution is a custom-designed lead-forming tool, and we have to say we’re mighty impressed by it. His LED cubes use discrete RGB LEDs, the kind with four leads, each suspended in space by soldering them to wires. For the neat appearance needed to make such a circuit sculpture work, the leads must be trimmed and bent at just the right angles, a tedious job indeed when done by hand. His tool has servo-controlled jaws that grip the leads, with solenoid-actuated lead formers coming in from below to bend each lead just the right amount. The lead former, along with its companion trimmer, obviously went through a lot of iterations before [TylerTimoJ] got everything right, but we’d say being able to process thousands of LEDs without all the tedium is probably worth the effort.

We’re looking forward to the huge LED cubes this tool will enable. Perhaps this CNC wire bender and an automated wire cutter would come in handy for the supporting wires?

Continue reading “Lead Former Makes LED Cubes A Little Easier To Build”

The Tens Of Millions Of Faces Training Facial Recognition; You’ll Soon Be Able To Search For Yourself

In a stiflingly hot lecture tent at CCCamp on Friday, Adam Harvey took to the stage to discuss the huge data sets being used by groups around the world to train facial recognition software. These faces come from a variety of sources and soon Adam and his research collaborator Jules LaPlace will release a tool that makes these dataset searchable allowing you to figure out if your face is among the horde.

Facial recognition is the new hotness, recently bubbling up to the consciousness of the general public. In fact, when boarding a flight from Detroit to Amsterdam earlier this week I was required to board the plane not by showing a passport or boarding pass, but by pausing in front of a facial recognition camera which subsequently printed out a piece of paper with my name and seat number on it (although it appears I could have opted out, that was not disclosed by Delta Airlines staff the time). Anecdotally this gives passengers the feeling that facial recognition is robust and mature, but Adam mentions that this not the case and that removed from highly controlled environments the accuracy of recognition is closer to an abysmal 2%.

Images are only effective in these datasets when the interocular distance (the distance between the pupils of your eyes) is a minimum of 40 pixels. But over the years this minimum resolution has been moving higher and higher, with the current standard trending toward 300 pixels. The increase is not surprising as it follows a similar curve to the resolution available from digital cameras. The number of faces available in data sets has also increased along a similar curve over the years.

Adam’s talk recounted the availability of face and person recognition datasets and it was a wild ride. Of note are data sets by the names of Brainwash Cafe, Duke MTMC (multi-tracking-multi-camera),  Microsoft Celeb, Oxford Town Centre, and the Unconstrained College Students data set. Faces in these databases were harvested without consent and that has led to four of them being removed, but of course, they’re still available as what is once on the Internet may never die.

The Microsoft Celeb set is particularly egregious as it used the Bing search engine to harvest faces (oh my!) and has associated names with them. Lest you think you’re not a celeb and therefore safe, in this case celeb means anyone who has an internet presence. That’s about 10 million faces. Adam used two examples of past CCCamp talk videos that were used as a source for adding the speakers’ faces to the dataset. It’s possible that this is in violation of GDPR so we can expect to see legal action in the not too distant future.

Your face might be in a dataset, so what? In their research, Adam and Jules tracked geographic locations and other data to establish who has downloaded and is likely using these sets to train facial recognition AI. It’s no surprise that the National University of Defense Technology in China is among the downloaders. In the case of US intelligence organizations, it’s easier much easier to know they’re using some of the sets because they funded some of the research through organizations like the IARPA. These sets are being used to train up military-grade face recognition.

What are we to do about this? Unfortunately what’s done is done, but we do have options moving forward. Be careful of how you license images you upload — substantial data was harvested through loopholes in licenses on platforms like Flickr, or by agreeing to use through EULAs on platforms like Facebook. Adam’s advice is to stop populating the internet with faces, which is why I’ve covered his with the Jolly Wrencher above. Alternatively, you can limit image resolution so interocular distance is below the forty-pixel threshold. He also advocates for changes to Creative Commons that let you choose to grant or withhold use of your images in train sets like these.

Adam’s talk, MegaPixels: Face Recognition Training Datasets, will be available to view online by the time this article is published.

Take Pictures Around A Corner

One of the core lessons any physics student will come to realize is that the more you know about physics, the less intuitive it seems. Take the nature of light, for example. Is it a wave? A particle? Both? Neither? Whatever the answer to the question, scientists are at least able to exploit some of its characteristics, like its ability to bend and bounce off of obstacles. This camera, for example, is able to image a room without a direct light-of-sight as a result.

The process works by pointing a camera through an opening in the room and then strobing a laser at the exposed wall. The laser light bounces off of the wall, into the room, off of the objects on the hidden side of the room, and then back to the camera. This concept isn’t new, but the interesting thing that this group has done is lift the curtain on the image processing underpinnings. Before, the process required a research team and often the backing of the university, but this project shows off the technique using just a few lines of code.

This project’s page documents everything extensively, including all of the algorithms used for reconstructing an image of the room. And by the way, it’s not a simple 2D image, but a 3D model that the camera can capture. So there should be some good information for anyone working in the 3D modeling world as well.

Thanks to [Chris] for the tip!

Inventor And Detective Create Range Of Snack-Hiding Devices

Anyone who has had to deal with siblings, their friends, flatmates or parents who are overly fond of snacks may know this issue: you bought some snacks for your own consumption, but before you can get to them they have vanished. Naturally, nobody knows what happened to said snacks and obviously outraged that anyone would dare to do such a dastardly thing like eating someone else’s snacks.

This is the premise behind British inventor [Colin Furze]’s new series of YouTube videos (embedded after the break). Teaming up with former Scotland Yard detective [Peter Bleksley], their goal is to find ways to hide snacks around the house where curious and peckish individuals will not find them. Though a snack-company sponsored series (Walkers) and featuring snack names that will ring no bells for anyone outside of the UK, it nevertheless shows some innovative ways to hide snacks.

The first episode shows how one can hide snacks (or something else, naturally) inside a door. The second tweaks a standing lamp to add some hidden drawers, and the third episode creates a hidden compartment behind a television. Perhaps the most intriguing part of these episodes is the way it highlights how easy it is to not just hide snacks around the house, but also devices for automation and monitoring. Just think how one could use these tricks for IoT projects and the like.

Continue reading “Inventor And Detective Create Range Of Snack-Hiding Devices”

The Danish Internet Of Hot Tubs

Every hacker camp has its own flavor, and BornHack 2019 in the Danish countryside gave us the opportunity to sample some hacker relaxation, Scandinavian style. Among the attractions was a wood-fired hot tub of gargantuan proportions, in which the tired attendee could rejuvenate themselves at 40 Celcius in the middle of the forest. A wood-fired hot tub is not the easiest of appliances to control, so to tame it [richard42graham] and a group of Danish hackerspace friends took it upon themselves to give it an internet-connected temperature sensor.

The starting point was a TMP112 temperature sensor and an ESP8266 module, which initially exposed the temperature reading via a web interface, but then collapsed under too much load. The solution was to make the raw data available via MQTT, and from that create a web interface for the event bar, Twitter and IRC bots. There was even an interface to display hot tub temperature on the ubiquitous OHMlights dotted around the camp.

It’s more normal to control a hot tub via an electric heater, but since the wood fire on this one has to be tended by a camp volunteer it made sense to use the IRC system as an alert. It will be back at BornHack 2020, so we’ll have to do our job here at Hackaday and spend a long time lounging in the hot tub in the name of journalistic research to see how well it works.

Hacked Hoverboards Become Potent RC Tank

Hoverboards were the darling, or perhaps the scourge, of the last few years, Banned by vigilant airlines, they’re a great way to break an ankle or set your house on fire. However, they’re also a treasure trove of valuable parts for hacking, as [Aaron] ably demonstrates with his RC tank build.

[Aaron’s] build utilizes not only the hoverboard’s torquey hub motors but also the original control hardware, too. This is a cinch to repurpose, thanks to the custom firmware for the original controller developed by [Lucy Fauth], whose work we have featured before.

The hacked parts are crammed into a chassis built with aluminum extrusion, and the final result is a nimble and robust tank with one motor per wheel. This enables some exciting driving dynamics. Additionally, with all the torque available, [Aaron] is even able to ride the tank like an electric skateboard.

It’s a fun build that shows off the raw power available from the hoverboard hardware. We fully expect to see these parts remain popular in the hacking scene in the coming years. Video after the break.

Continue reading “Hacked Hoverboards Become Potent RC Tank”