Japan To Launch Wooden Satellites

We may have wooden satellites in just a few years, according to an announcement this month by Kyoto University and Sumitomo Forestry, organizations whose combined roots go back 550 years.

Wood’s place in high-technology has a long track record. During World War 2, wooden boats were used for minesweepers, the Spruce Goose was designed to circumvent wartime material restrictions, and Britain’s plywood-built De Havilland Mosquito had a very low radar cross section. In this century, a man in Bosnia has even built a Volkswagen Beetle out of oak.

The newly-announced aerospace project, led by retired astronaut and engineer Prof Takao Doi, plans to launch satellites built from wood in order to reduce space debris and hazardous substances resulting from re-entry. We’re somewhat skeptical on the hazardous substances angle (and we’re not alone in this), but certainly as a way to help ensure complete burn up upon re-entry, wood is an interesting material. It also achieves a great strength to weight ratio and as a renewable resource it’s easy to source.

Prof Doi has been studying the use of wood in space for several years now. Back in 2017 he began basic research on the usability of timbers in space (pg 16), where his team experimented with coniferous (cedar and cypress) and hardwood (satinwood, magnolia, and zelkova) trees in vacuum environments. Based on successes, they predicted wooden satellite launches in the mid 2020s (their announcement this month said 2023). Sumitomo engineers have not released what kind of wood(s) will finally be used on the satellite.

You might remember Astronaut Doi from an experiment aboard the ISS where he successfully demonstrated flying a boomerang in space (video below), and he’s also discovered two supernovae in his spare time. We wish him good luck.

Continue reading “Japan To Launch Wooden Satellites”

Water And Molten Aluminium Is A Dangerous Combination

It is not uncommon for a Hackaday writer to trawl the comments section of a given article, looking for insights or to learn something new. Often, those with experience in various fields will share kernels of knowledge or raise questions on a particular topic. Recently, I happened to be glazing over an article on aluminium casting with interest, given my own experience in the field. One comment in particular caught my eye.

 And no, the water won’t cause a steam explosion. There’s a guy on youtube (myfordlover, I think) who disproves that myth with molten iron, pouring the iron into water, pouring water into a ladle of molten iron and so on. We’ll be happy to do a video demonstrating this with aluminum if so desired.

Having worked for some time in an aluminium die casting plant, I sincerely hope [John] did not attempt this feat. While there are a number of YouTube videos showing that this can be done without calamity, there are many showing the exact opposite. Mixing molten aluminium and water often ends very poorly, causing serious injury or even fatalities in the workplace. Let’s dive deeper to see why that is.

Continue reading “Water And Molten Aluminium Is A Dangerous Combination”

Boston Dynamics’ Dancing Bots Beg For Your Love A La Napoleon Dynamite

How do you get people to love you and sidestep existential fear of robots eclipsing humans as the solar system’s most advanced thinking machines? You put on a dance routine to the music of Berry Gordy.

The video published by Boston Dynamics shows off a range of their advanced robots moving as if they were humans, greyhounds, and ostriches made of actual flesh. But of course they aren’t, which explains the safety barriers surrounding the dance floor and that lack of actual audio from the scene. After picking our jaws up off the floor we began to wonder what it sounds like in the room as the whine of motors must certainly be quite impressive — check out the Handle video from 2017 for an earful of that. We also wonder how long a dance-off of this magnitude can be maintained between battery swaps.

Anthropomorphism (or would it be canine-pomorphism?) is trending this year. We saw the Spot robot as part of a dance routine in an empty baseball stadium back in July. It’s a great marketing move, and this most recent volley from BD shows off some insane stunts like the en pointe work from the dog robot while the Atlas humanoids indulge in some one-footed yoga poses. Seeing this it’s easy to forget that these machines lack the innate compassion and empathy that save humans from injury when bumping into one another. While our robotic future looks bright, we’re not in a rush to share the dance floor anytime soon.

Still, it’s an incredible tribute to the state of the art in robotics — congratulations to the roboticists that have brought use here. Looking back eleven and a half years to the first time we covered these robots here on Hackaday, this seems more like CGI movie footage than real life. What’s more amazing? Hobby builds that are keeping up with this level of accomplishment.

Continue reading “Boston Dynamics’ Dancing Bots Beg For Your Love A La Napoleon Dynamite”

Solar Flares And Radio Communications — How Precarious Are Our Electronics?

On November 8th, 2020 the Sun exploded. Well, that’s a bit dramatic (it explodes a lot) — but a particularly large sunspot named AR2781 produced a C5-class solar flare which is a medium-sized explosion even for the Sun. Flares range from A, B, C, M, and X with a zero to nine scale in each category (or even higher for giant X flares). So a C5 is just about dead center of the scale. You might not have noticed, but if you lived in Australia or around the Indian Ocean and you were using radio frequencies below 10 MHz, you would have noticed since the flare caused a 20-minute-long radio blackout at those frequencies.

According to NOAA’s Space Weather Prediction Center, the sunspot has the energy to produce M-class flares which are an order of magnitude more powerful. NOAA also has a scale for radio disruptions ranging from R1 (an M1 flare) to R5 (an X20 flare). The sunspot in question is facing Earth for the moment, so any new flares will cause more problems. That led us to ask ourselves: What if there were a major radio disruption?

Continue reading “Solar Flares And Radio Communications — How Precarious Are Our Electronics?”

Improve ATtiny Timing Accuracy With This Clock Calibrator

The smaller ATtiny microcontrollers have a limited number of pins, and therefore rely on an internal 9.6 MHz oscillator rather than an external crystal. This oscillator lacks the accuracy of a crystal so individual chips can vary over a significant tolerance from the nominal figure. Happily the resulting timing inaccuracies can be mitigated through a calibration process, and [Stefan Wagner] has incorporated this into his Tiny Calibrator. In addition, it also has the required charge pump circuitry to reset the internal fuses to rescue “bricked” ATtinys, thus allowing those little mistakes to be salvaged.

The board has its own larger ATtiny with a crystal oscillator and an OLED screen, allowing it to measure that of the test ATtiny and generate a correction factor which it applies to the chip. This process is repeated until there is the smallest possible difference from the standard. You can find the files for the hardware on EasyEDA, and the software in a GitHub repository.

It’s important to state that the result will never be as stable as a crystal so you’d be well advised not to put too much trust in those timers, but at least they won’t be as far off the mark as when shipped. All in all this is a handy board to have at hand should you be developing for the smaller ATtiny chips.

Be careful when chasing clock accuracy — it can lead you down a rabbit hole.

Amiga Now Includes HDMI By Way Of A Raspberry Pi Daughterboard

If you had an Amiga during the 16-bit home computer era it’s possible that alongside the games and a bit of audio sampling you had selected it because of its impressive video capabilities. In its heyday the Amiga produced broadcast-quality graphics that could even be seen on more than a few TV shows from the late 1980s and early 1990s. It’s fair to say though that the world of TV has moved on since the era of Guru Meditation, and an SD video signal just won’t cut it anymore. With HDMI as today’s connectivity standard, [c0pperdragon] is here to help by way of a handy HDMI upgrade that taps into the digital signals direct from the Amiga’s Denise chip.

At first thought one might imagine that an FPGA would be involved, however instead the signals are brought out via a daughterboard to the expansion header of a Raspberry Pi Zero. Just remove the DENISE display encoder chip and pop in the board with uses a long-pinned machined DIP socket to make the connections. The Pi runs software from the RGBtoHDMI project originally created with the BBC Micro in mind, to render pixel-perfect representations of the Amiga graphics on the Pi’s HDMI output. The caveat is that it runs on the original chipset Amigas and only some models with the enhanced chipset, so it seems Amiga 600 owners are left in the cold. A very low latency is claimed, which should compare favourably with some other solutions to the same problem.

This isn’t the first time we’ve seen an HDMI Amiga conversion, but it’s one that’s usable on more than simply the big-box machines.

Continue reading “Amiga Now Includes HDMI By Way Of A Raspberry Pi Daughterboard”

More 3D Printed IKEA Hacks Make Life Better

There’s an old joke that the CEO of IKEA is running to be Prime Minister of Sweden. He says he’ll be able to put together his cabinet in no time. We don’t speak Swedish, but [Adam Miklosi] tells us that the word “uppgradera” means “upgrade” in Swedish. His website, uppgradera.co has several IKEA upgrade designs you can 3D print.

There are currently six designs that all appear to be simple prints that have some real value. These are all meant to attach to some IKEA product and solve some consumer problem.

For example, the KL01 is a cup holder with a clip that snaps into the groove of a KLIPSK bed tray. Without it, apparently, your coffee mug will tend to slide around the surface of the tray. The CH01 adds a ring around a cheese grater. There are drains for a soap dish and a toothbrush holder, shoulder pads for coat hangers, and a lampshade.

We worry a little about the safety of the cheese grater and the toothbrush because you will presumably put the cheese and the toothbrush into your mouth. Food safe 3D printing is not trivial. However, the other ones look handy enough, and we know a lot of people feel that PLA is safe enough for things that don’t make a lot of contact with food.

Honestly, none of these are going to change your life, but they are great examples of how simple things you can 3D print can make products better. People new to 3D printing often seem to have unrealistic expectations about what they can print and are disappointed that they can’t easily print a complete robot or whatever. However, these examples show that even simple designs that are easily printed can be quite useful.

If you don’t have a printer, it looks like as though site will also sell you the pieces and they aren’t terribly expensive. We don’t know why IKEA invites so many hacks, but even they provide 3D printer files to improve the accessibility of some products.