Laptoppin’ Like 1975

When we first saw the PZ1 laptop — a 6502 laptop-style computer with a small display and 512K of RAM — we couldn’t help but think of the old AIM 65 computer from Rockwell, although that only had 1K of memory. The other thing the AIM didn’t have was an ancillary microcontroller to help out that is way more powerful than the main processor.

There are actually several versions of the PZ1 and you can find some very detailed information over on Hackaday.io and GitHub. Recently, [Adam] release version 2.0 and tested some PC boards that are working well.

Continue reading “Laptoppin’ Like 1975”

Compare PDFs Visually

Sometimes a problem seems hard, but the right insight can make it easy. If you were asked to write a program to compare two PDF files and show the differences, how hard do you think that would be? If you are [serhack], you’ll make it much easier than you might guess.

Of course, sometimes making something simple depends on making simplifying assumptions. If you are expecting a “diff-like” utility that shows insertion and deletions, that’s not what’s going on here. Instead, you’ll see an image of the PDF with changes highlighted with a red box. This is easy because the program uses available utilities to render the PDFs as images and then simply compares pixels in the resulting images, drawing red boxes over the parts that don’t match.

Continue reading “Compare PDFs Visually”

This Stainless Steel Knife Build Starts With Raw Iron Ore

Making knives at home has become a popular hobby, thanks partly to reality TV and the free time and idle hands afforded by lockdowns. Depending on how far you get into the hobby, builds can range from assembling and finishing a kit with pre-forged parts, to actual blacksmithing with a hammer and anvil. But pretty much every build includes steel from a commercial supplier.

Not this one. Rather than buy his metal from the usual sources, [Thoisoi]’s first stop was an iron mine in the Italian Alps, where he picked up a chunk of iron ore — magnetite, to be precise. Smelting one’s own iron from raw ore and alloying it into steel is generally not a backyard project thanks to the high temperatures needed, a problem [Thoisoi] solved with the magic of thermite. The iron oxide and aluminum in the thermite mix react in an exceptionally exothermic manner to generate elemental iron, which under controlled conditions can be captured as a more or less pure ingot, ready for forging.

After a test with commercially obtained iron oxide, [Thoisoi] tried his pulverized magnetite. And thanks to the addition of goodies like graphite, manganese, nickel, silicon, and chromium, he was eventually able to create a sizable lump of 402 stainless steel. He turned the metal over to an actual blacksmith for rough forging; it sure seemed to act like steel on the anvil. The finished knife looks good and performs well, and the blade has the characteristic look of stainless. Not a bad result, and all at the cost of a couple of clay flowerpots.

Continue reading “This Stainless Steel Knife Build Starts With Raw Iron Ore”

A family of PixMob bracelets being coltrolled by an ESP32 with an IR transmitter attached to it. All the bracelets are shining a blue-ish color

PixMob Wristband Protocol Reverse-Engineering Groundwork

The idea behind the PixMob wristband is simple — at a concert, organizers hand these out to the concertgoers, and during the show, infrared projectors are used to transmit commands so they all light up in sync. Sometimes, attendees would be allowed to take these bracelets home after the event, and a few hackers have taken a shot at reusing them.

The protocol is proprietary, however, and we haven’t yet seen anyone reuse these wristbands without tearing them apart or reflashing the microcontroller. [Dani Weidman] tells us, how with [Zach Resmer], they have laid the groundwork for reverse-engineering the protocol of these wristbands.

Our pair of hackers started by obtaining a number of recordings from a helpful stranger online, and went onto replaying these IR recordings to their wristbands. Most of them caused no reaction – presumably, being configuration packets, but three of them caused the wristbands to flash in different colors. They translated these recordings into binary packets, and Dani went through different possible combinations, tweaking bits here and there, transmitting the packets and seeing which ones got accepted as valid. In the end, they had about 100 valid packets, and even figured out some protocol peculiarities like color animation bytes and motion sensitivity mode enable packets.

The GitHub repository provides some decent documentation and even a video, example code you can run on an Arduino with an IR transmitter, and even some packets you can send out with a  Flipper Zero. If you’re interested in learning more about the internals of this device, check out the teardown we featured back in 2019.

Hackaday Prize 2022: DIY Brushless Hand Cranked Generator

A standard part of travel kit for the 2020s is now a battery pack — a hefty lithium-ion cell with onboard electronics for USB charging, that ensures all of our devices stay topped up while we’re out of range of a socket. But what happens when there is no handy mains supply to recharge it from? Step in [Chleba], with a hand cranked generator.

There are plenty of hand cranked generators to be found online, from tiny devices intended to top up a single phone to sturdy metal boxes intended for battery charging. This one differs from those in that most use a brushed DC motor as a cheap generator, while here that function comes from a stepper motor feeding a rectifier pack and thence a DC-to-DC converter. A step-up gearbox provides the necessary shaft speed, and a neat 3D-printed case rounds everything off.

The result is about as neat a generator as you could imagine, and would certainly be of use shoved into any off-grid backpack. Meanwhile it’s not the first we’ve shown you, we’ve even see one that could start a car.

Learning By Playing

Summer break has started over here, and my son went off to his first of a few day-camp-like activities last week. It was actually really cool – a workshop held by our local Fablab where they have the kids make a Minecraft building and then get to 3D-print it out. He loves playing and building in Minecraft, so we figured this would be right up his alley.

TinkerCAD model of a Lego Minecraft fox. Kiddo trifecta!

I had naively thought that it would work something like this: the kids build something in Minecraft, and then some software extracts the build and converts it into an STL file. Makes sense, because they already are more-or-less fluent in Minecraft modelling. And as I thought about that, it was a pretty clever idea.

But the truth was even sneakier. They warmed up by making something in Minecraft, then they opened up TinkerCAD, which was new to all of the kids, and built a 3D model there. Then they converted the TinkerCAD models into Minecraft, and played with what they had just built while the 3D printers hummed away.

The kids didn’t even flinch at having to learn a new 3D modelling tool, and the parallels to what they were already comfortable doing in Minecraft were obvious to them. My son came home and told me how much easier it was to do your 3D modelling in “this other Minecraft” – he meant TinkerCAD – because you don’t need to build everything out of single blocks. He thought he was playing games, but he’d secretly used his first CAD tool. Nice trick!

Then I look back and realize how much I must have learned about computers through playing as a kid. Heck, how much I still learn through playing. And of course I’m not alone – that’s one of the things that shines through in a large number of the projects we feature. Hack on and have fun!

Solar Plane Might Be Able To Last Through The Night

“Just add solar panels to the wings” is a popular suggestion for improving the flight times of fixed-wing drones. However, the reality is not so simple, and it’s easy to hurt rather than help flight times with the added weight and complexity. The team at [Bearospace Industries] has been working on the challenge for the while, and their Solar Dragon aircraft recently had a very successful test flight, producing about 50% more power than it was consuming.

Instead of just trying to slap solar panels to an existing plane, an airframe should ideally be designed from the ground up as a balancing act between a range of factors. These include weight, efficiency, flight envelope, structural integrity, and maximum surface area for solar panels. All the considerations are discussed by [Bearospace] in an excellent in-depth video, which is an indispensable resource for anyone planning to build a solar plane.

[Bearospace] put all the theory into practice on Solar Dragon, which incorporates over 250 W of high-efficiency Maxeon C60 solar cells on the wing, tail, and triangular fuselage. The cells were wired to match their maximum power point voltage as closely as possible to the plane’s 3S lithium-ion battery pack, enabling the solar cells to charge the battery directly. To prevent overcharging, a solid state relay was used to disconnect the solar cells from the battery as required.

The batteries maintained the same average state of charge during the entire one-hour late morning flight, even though the panels were only connected 65% of the time. The team expects they might be able to get even better performance from the cells with a good MPPT charger, which will be required for less than ideal solar conditions.

Solar Dragon has a much larger payload capacity than was used during the test flight, more than enough for an MPPT charger and a significantly larger battery. With this and a long list of other planned improvements, it might be possible for the Solar Dragon to charge up during the day and fly throughout the night on battery power alone. One interesting potential approach mentioned is to also store energy in the form of altitude during the day, and use the aircraft’s slow sink rate to minimize battery usage at night.

Solar planes come up every few months on Hackaday, with [rctestflight] being one of the usual suspects. You also don’t need solar panels for long flight times, as [Matthew Heiskell] proved with a 10-hour 45 minute flight on battery power alone.

Continue reading “Solar Plane Might Be Able To Last Through The Night”