Modding A Nerf Blaster The Old Fashioned Way

The Pistol Splat was a very weak blaster built for children, designed to shoot toy-grade paintball-like ammunition. [Matt Yuan] recognised the potential of the single-shot design, though, and repurposed it as a powerful Nerf blaster.

The blaster is a simple spring-plunger design. Upon pulling the trigger, the spring drives the piston forward, shooting the ammunition out the barrel. As stock, the Pistol Splat featured an incredibly strong spring and an unrestricted barrel, giving it plenty of performance capability. With some finagling, it’s capable of shooting a Nerf dart at 100 feet per second in stock form.

[Matt] improved the blaster by removing its dry-fire protection spring, which consists of a second spring to resist the plunger’s motion. Modification also involved fitting a barrel sized to properly seal on the darts. These two mods boosted the dart velocity to 110 feet per second. Adding a spacer to ensure the spring fully drove the piston forward for its full travel further boosted the dart velocity to a mighty 145 feet per second.

It bears noting that serious Nerf blasters like these demand eye protection. Video after the break.

Continue reading “Modding A Nerf Blaster The Old Fashioned Way”

Growing Oxides On Silicon On The Road To DIY Semiconductors

Doing anything that requires measurements in nanometers is pretty difficult, and seems like it would require some pretty sophisticated equipment. But when the task at hand is growing oxide layers on silicon chips in preparation for making your own integrated circuits, it turns out that the old Mark 1 eyeball is all you need.

Alert readers may recall that [ProjectsInFlight] teased this process in his previous video, which covered the design and construction of a DIY tube furnace. In case you missed that, a tube furnace is basically a long, fused quartz tube wrapped in electrical heating elements and lots of insulation, which is designed to reach the very high temperatures needed when making integrated circuits. The tube furnace proved itself up to the task by creating a thin layer of silicon dioxide on a scrap of silicon wafer. Continue reading “Growing Oxides On Silicon On The Road To DIY Semiconductors”

Hackaday Links Column Banner

Hackaday Links: September 3, 2023

Right-to-repair has been a hot-button topic lately, with everyone from consumers to farmers pretty much united behind the idea that owning an item should come with a plausible path to getting it fixed if it breaks, or more specifically, that you shouldn’t be subject to prosecution for trying to repair your widget. Not everyone likes right-to-repair, of course — plenty of big corporations want to keep you from getting up close and personal with their intellectual property. Strangely enough, their ranks are now apparently joined by the Church of Scientology, who through a media outfit in charge of the accumulated works of Church founder L. Ron Hubbard are arguing against exemptions to the Digital Millennium Copyright Act (DMCA) that make self-repair possible for certain classes of devices. They apparently want the exemption amended to not allow self-repair of any “software-powered devices that can only be purchased by someone with particular qualifications or training or that use software ‘governed by a license agreement negotiated and executed’ before purchase.

Continue reading “Hackaday Links: September 3, 2023”

Bare PCB Makes A Decent Homemade Smart Watch

These days, we live in a post-Dick Tracy world, where you can make a phone call with your fancy wristwatch, and lots more besides. [akashv44] has gone a simpler route, designing their own from scratch with a bare PCB design.

The build is based around the ESP-12E microcontroller, providing useful wireless connectivity that lets the watch interface with the outside world. The firmware makes queries of NTP servers and Yahoo’s weather API to collect time and weather data for display. It’s also capable of interacting with Blynk relay modules for controlling other equipment, which [akashv44] uses with lights and an air conditioner. The watch uses a small OLED display and a handful of small surface-mount tactile buttons for control. Power is courtesy of a small lithium-ion pouch cell, with charging handled by a TP4056 battery management IC.

It’s a simple smartwatch, but nonetheless one that teaches all kinds of useful skills in embedded development and design. It’s also funny to think how simple it is to build. A decade ago, before the ESP8266 was released, getting wireless connectivity in such a small package was a major engineering challenge. Even the Apple Watch didn’t come out until 2015! Food for thought.

Tiny Drone Racing Gate Records Your Best Laps

Professional drone racing is now an elite sport, with all the high-end tech, coverage, and equipment that goes along with it. If you’re just practicing with tiny drones in your home though, you might not be so well equipped. You might want to build something like this tiny FPV drone racing gate from [ProfessorBoots] to help keep track of laptimes while you’re training.

The build uses ultrasonic range sensors to detect when an object passes through the gate. The gate itself consists of a ring of addressable LEDs in strip form. The gate switches from green to red as a visual indicator of a drone passing through the gate. There’s also a small 2.4-inch touch screen that displays laptimes and enables the gate to be configured quickly and easily. The gate also serves up a webpage on the local network for viewing laptimes in a browser.

It does bear noting that at this stage, it’s primarily a practice tool. The gate doesn’t currently work for proper competitions, as it has no way of determining which drone might be flying through the gate at any one time.

It’s not the first time we’ve seen a TinyWhoop drone, either. Video after the break.

Continue reading “Tiny Drone Racing Gate Records Your Best Laps”

If You Aren’t Making Your Own Relays…

We’ve all been there. Someone will say something like, “I remember when we had to put our programs on a floppy disk…” Then someone will interrupt: “Floppy disk? We would have killed for floppy disks. We used paper tape…” After a few rounds, someone is talking about punching cards with a hand stylus or something. Next time someone is telling you about their relay computer, maybe ask them if they are buying their relays already built. They will almost surely say yes, and then you can refer them to [DiodeGoneWild], who shows how he is making his own relays.

While we don’t seriously suggest you make your own relays, there are a lot of fun techniques to pick up, from the abuse of a power drill to the calculation of the coil parameters. Even if you don’t learn anything, we get the desire to make as much as you can.

Continue reading “If You Aren’t Making Your Own Relays…”

Hackaday Prize 2023: Gen5X A Generatively Designed 5-Axis 3D Printer

[Ric Real] is entering the 2023 Hackaday Prize with the Gen5X, a generatively designed 3D printed five-axis 3D printer. The concept is not a new one, with the type of construction being seen a few times here and there. In addition to the usual three directions of motion, we’re familiar with, with the cartesian bot design, these types of machines add an additional two rotation axes, one which can swing the build platform front and back around the X-axis, and a second that provides rotation around the Z-axis. These combined motions give rise to some very interesting capabilities, outside of our familiar 3D printing design constraints.

As for the generative side of things, this is a largely theoretical idea. Essentially the concept is that the machine’s design can be iteratively updated and optimised for performance to fit into the constraints of available hardware such as motors and other ‘vitamins’ needed to create the next generation of machines. The design files should be parameterised enough such that this optimisation process can be automated, potentially via input from AI, but we suspect we’re a way off from that yet. Whether this project as yet satisfies any of these lofty goals remains to be seen, but do keep an eye on it if you’re so inclined. There is a Fusion 360 project here to dig into, but if you’re not interested in the research side of the project, but just want to build a 5-axis machine to play with, then you can find the project source on the GitHub Page.

If this feels familiar, you’d be on the right track, as we covered at least one other 5D printer recently. We have also touched upon generative design at least once. We’re sure we will see more on this topic in the future.

Continue reading “Hackaday Prize 2023: Gen5X A Generatively Designed 5-Axis 3D Printer”