Custom Case Turns Steam Deck Into Portable Workstation

DIY portable computing takes many forms, and doesn’t always require getting down and dirty with custom electronics. [Justinas Jakubovskis]’s Steam Deck Play and Work case demonstrates this with some really smart design features.

It’s primarily a carrying case for Valve’s Steam Deck portable PC gaming console, but the unit also acts as a fold-out workstation with keyboard. Add a wireless mouse to the mix and one can use it much like a mini laptop, or just pull the Steam Deck out and use it in the usual way.

The case is 3D printed and while the model isn’t free (links are in the video description) some of the design features are worth keeping in mind even if you’re not buying. The top clasp, for example, doubles as a cover for the buttons and exhaust vents and the kickstand at the rear covers the cooling intake when closed, and exposes it when deployed. We also really like the use of thick fabric tape lining the inside of the case to support and cushion the Steam Deck itself; it’s an effective and adjustable way to provide a soft place for something to sit.

The case is intended to fit a specific model of keyboard, in this case the Pebble Keys 2 K380s (also available as a combo with a mouse). But if you want to roll your own Steam Deck keyboard and aren’t afraid of some low-level work, check out the Keysheet. Or go deeper and get some guidance on modding the Steam Deck itself.

Continue reading “Custom Case Turns Steam Deck Into Portable Workstation”

Carnarvon’s Decommissioned NASA Satellite Dish Back In Service After 40 Years

The OTC Station 29.8 meter dish at Carnarvon, Australia, in need of a bit of paint. (Credit: ABC News Australia)
The OTC Station 29.8 meter dish at Carnarvon, Australia, in need of a bit of paint. (Credit: ABC News Australia)

Recently the 29.8 meter parabolic antenna at the Australian OTC (overseas telecommunications commission) station came back to life again after nearly forty years spent in decommissioning limbo.

This parabolic dish antenna shares an illustrious history together with the older 12.8 meter Casshorn antenna in that together they assisted with many NASA missions over the decades. These not only include the Apollo 11 Moon landing with the small antenna, but joined by the larger parabolic dish (in 1969) the station performed tracking duty for NASA, ESA  and many other missions. Yet in 1987 the station was decommissioned, with scrapping mostly averted due to the site being designated a heritage site, with a local museum.

Then in 2022 the 29.8 meter parabolic dish antenna was purchased by by ThothX Australia, who together with the rest of ThothX’s world-wide presence will be integrating this latest addition into a satellite tracking system that seems to have the interest of various (military, sigh) clients.

Putting this decommissioned dish back into service wasn’t simply a matter of flipping a few switches. Having sat mostly neglected for decades it requires extensive refurbishing, but this most recent milestone demonstrates that the dish is capable of locking onto a satellites. This opens the way for a top-to-bottom refurbishment, the installation of new equipment and also a lick of paint on the dish itself, a process that will still take many years but beats watching such a historic landmark rust away by many lightyears.

Featured image: OTC Earth Station. (Credit: Paul Dench)

Hackaday Links Column Banner

Hackaday Links: January 12, 2025

The big news story of the week of course has been the wildfires in California, which as of Saturday have burned over 30,000 acres, destroyed 12,000 structures, caused 150,000 people to evacuate, and killed eleven people. Actually, calling them wildfires underplays the situation a bit because there are places where they’ve clearly become firestorms, burning intensely enough to create their own winds, consuming everything in their path in a horrific positive feedback loop. We’ve even seen fire tornados caught on video. We’ve got quite a few connections to the affected area, both personally and professionally, not least of which are all our Supplyframe colleagues in Pasadena, who are under immediate threat from the Eaton fire. We don’t know many details yet, but we’ve heard that some have lost homes. We’ve also got friends at the Jet Propulsion Labs, which closed a few days ago to all but emergency personnel. The fire doesn’t seem to have made it down the mountain yet, but it’s very close as of Saturday noon.

Continue reading “Hackaday Links: January 12, 2025”

Gaming Table Has Lights, Action

We couldn’t decide if [‘s] Dungeons and Dragons gaming table was a woodworking project with some electronics or an electronics project with some woodworking. Either way, it looks like a lot of fun.

Some of the features are just for atmosphere. For example, the game master can set mood lighting. Presets can have a particular light configuration for, say, the woods or a cave.

But the table can also be a game changer since the game runner can send private messages to one or more players. Imagine a message saying, “You feel strange and suddenly attack your own team without any warning.”

Continue reading “Gaming Table Has Lights, Action”

Usagi’s PDP-11 Supercomputer And Appeal For Floating Point Systems Info

With an exciting new year of retrocomputing ahead for [David Lovett] over at the Usagi Electric YouTube channel, recently some new hardware arrived at the farm. Specifically hardware from a company called Floating Point Systems (FPS), whose systems provide computing features to assist e.g. a minicomputer like [David]’s PDP-11/44 system with floating point operations. The goal here is to use a stack of 1980s-era FPS hardware to give the PDP-11/44 MIMD (multiple instructions, multiple data) computing features, which is a characteristic associated with supercomputers.

The FPS hardware is unfortunately both somewhat rare and not too much documentation, including schematics, has been found so far. This is where [David] would love some help from the community on finding more FPS hardware, documentation and any related information so that it can all be preserved.

FPS itself was acquired by Cray in 1991, before SGI took over Cray Research in 1996. As is usual with such acquisitions, a lot of older information tends to get lost, along with the hardware as it gets tossed out over the years by companies and others. So far [David] has acquired an FPS-100 array processor, an interface card for the PDP-11 and an FPS-3000, the latter of which appears to be a MIMD unit akin to the FPS-5000.

Without schematics, let alone significant documentation, it’s going to be an uphill battle to make it all work again, but with a bit of help from us retrocomputer enthusiasts, perhaps this might not be as impossible after all.

Continue reading “Usagi’s PDP-11 Supercomputer And Appeal For Floating Point Systems Info”

Second CNC Machine Is Twice As Nice

[Cody Lammer] built a sweet CNC router. But as always, when you build a “thing”, you inevitably figure out how to build a better “thing” in the process, so here we are with Cody’s CNC machine v2.0. And it looks like CNC v1.0 was no slouch, so there’s no shortage of custom milled aluminum here.

The standout detail of this build is that almost all of the drive electronics and logic are hidden inside the gantry itself, making cabling a lot less of a nightmare than it usually is. While doing this was impossible in the past, because everything was just so bulky, he manages to get an ESP32 and the stepper drivers onto a small enough board that it can move along with the parts that it controls. FluidNC handles the G-Code interpretation side of things, along with providing a handy WiFi interface. This also allows him to implement a nice jog wheel and a very handy separate position and status indicator LCD on the gantry itself.

When you’re making your second CNC, you have not only the benefit of hindsight, but once you’ve cut all the parts you need, you also have a z-axis to steal and just bolt on. [Cody] mentions wanting a new z-axis with more travel – don’t we all! – but getting the machine up and running is the first priority. It’s cool to have that flexibility.

All in all, this is a very clean build, and it looks like a great improvement over the old machine. Of course, that’s the beauty of machine tools: they are the tools that you need to make the next tool you need. Want more on that subject? [Give Quinn Dunki’s machining series a read].

Fraens’ New Loom And The Limits Of 3D Printing

[Fraens] has been re-making industrial machines in fantastic 3D-printable versions for a few years now, and we’ve loved watching his creations get progressively more intricate. But with this nearly completely 3D-printable needle loom, he’s pushing right up against the edge of the possible.

The needle loom is a lot like the flying shuttle loom that started the Industrial Revolution, except for making belts or ribbons. It’s certainly among the most complex 3D-printed machines that we’ve ever seen, and [Fraens] himself says that it is pushing the limits of what’s doable in plastic — for more consistent webbing, he’d make some parts out of metal. But that’s quibbling; this thing is amazing.

There are mechanical details galore here. For instance, check out the cam-chain that raises, holds, and lowers arms to make the pattern. Equally important are the adjustable friction brakes on the rollers that hold the warp, that create a controlled constant tension on the strings.  (Don’t ask us, we had to Wikipedia it!) We can see that design coming in handy in some of our own projects.

On the aesthetic front, the simple but consistent choice of three colors for gears, arms, and frame make the build look super tidy. And the accents of two-color printing on the end caps is just the cherry on the top.

This is no small project, with eight-beds-worth of printed parts, plus all the screws, bearings, washers, etc. The models are for pay, but if you’re going to actually make this, that’s just a tiny fraction of the investment, and we think it’s going to a good home.

We are still thinking of making [Fraens]’s vibratory rock tumbler design, but check out all of his work if you’re interested in nice 3D-printed mechanical designs.

Continue reading “Fraens’ New Loom And The Limits Of 3D Printing”