I/V plot at various voltage levels

2025 Component Abuse Challenge: Reverse Biasing An NPN BJT

For the Component Abuse Challenge our hacker [Tim Williams] observes that N-P-N reads the same way forwards and backwards, so… what happens if we reverse bias one? (Note: this remark about N-P-N reading the same forward and backward is a lighthearted joke; in fact the level of doping in the emitter and collector is different so those Ns are not fungible and will exhibit different properties and have different characteristics.)

What happens if we reverse bias an NPN transistor?In the margin you can see how the question was originally posed by Bob Pease back in March 18, 1996.

In his article [Tim] mentions that some transistors are specifically designed to operate when reverse biased, which [Tim] calls “inverted mode”, whereas most transistors are not designed to work in this fashion and that’s the sort of abuse that could damage the component and lead it to malfunction.

But what is Vout? [Tim] reports that he measured approximately -0.4 volts using his high-impedance meter. We tried this experiment in the lab ourselves but we were not able to duplicate [Tim]’s result; however there is a long list of potential reasons for such an outcome. If you do this experiment yourself we would love to hear about your results in the comments section!

If you’re still learning about transistors you might like to check out our five part series on transistors as amplifiers, starting here: Won’t Somebody, Please, Think Of The Transistors!

Thanks to [Tim] for his submission, we wish him the best of luck in the competition!

Making Steam-Powered LEGO Machines

Over the decades we have seen a lot of methods for powering LEGO-based contraptions, ranging from LEGO Technic pneumatics to electric motors, but what about steam power? We have all seen those cute little model steam engines that can definitely put out some power. Sure, you can just drop those in like a kind of confused internal combustion engine, or you can try to make a steam engine that actually tries to be directly compatible with LEGO.

While exploring this topic, [Jamie’s Brick Jams] on YouTube found that the primary concern here is simply the very hot steam produced by the boiler. While not a surprise to anyone who has ever run a model steam engine, this poses a major challenge to the thermoplastics used by LEGO.

Obviously a boiler cannot be made out of plastic, but the steam turbine can. That said, material selection here is key, as the hot, wet steam produced by the boiler demolishes PLA parts and ruined the original and very unsafe copper boiler in the process. Ultimately a LEGO Technic-compatible steam turbine was printed in high temperature resistant PAHT-CF and PC filament, which enables a steam-powered LEGO walker to come to life, albeit with a distinct lack of power.

Model steam engine enthusiasts are of course quick to point out that you should try to create dry steam through superheating, definitely add a safety valve and so on, all of which should make for an even more powerful and safe LEGO steam engine. For a rundown of how steam engines work, [Lawrie] did an excellent video on the basics a while back, as well as a video playlist full of demonstrations of both classical Mamod model engines and questionable modern takes.

Suffice it to say that although model steam engines look like toys, they involve fire, hot steam and other fascinating ways to melt things, light them on fire and cause painful injuries, so definitely follow a safety briefing before attempting any of it at home.

Continue reading “Making Steam-Powered LEGO Machines”

A drone is shown hovering in the sky, with two bright lights shining from its underside.

2025 Component Abuse Challenge: Overdriven LEDs Outshine The Sun

Tagging wildlife is never straightforward in the best of times, but it becomes a great deal more complicated when you’re trying to track flying insects. Instead of trying to use a sensor package, [DeepSOIC] attached tiny, light retroreflectors to bees and hornets, then used a pulsed infrared light mounted on a drone to illuminate them. Two infrared cameras on the drone track the bright dot that indicates the insect, letting the drone follow it. To get a spot bright enough to track in full sunlight, though, [DeepSOIC] had to drive some infrared LEDs well above their rated tolerances.

The LEDs manage to survive because they only fire in 15-µs pulses at 100 Hz, in synchrony with the frame rate of the cameras, rather like some welding cameras. The driver circuit is very simple, just a MOSFET switch driven by an external pulse source, a capacitor to steady the supply voltage, and a current-limiting resistor doing so little limiting that it could probably be removed. LEDs can indeed survive high-current pulses, so this might not really seem like component abuse, but the 5-6 amps used here are well beyond the rated pulse current of 3 amps for the original SFH4715AS LEDs. After proving the concept, [DeepSOIC] switched to 940 nm LEDs, which provide more contrast because the atmosphere absorbs more sunlight around this wavelength. These new LEDs were rated for 5A, so they weren’t being driven so far out of spec, but in tests they did survive current up to 10A.

We’ve seen a similar principle used to drive laser diodes in very high-power pulses a few times before. For an opposite approach to putting every last bit of current through an LED, check out this low-power safety light.

Continue reading “2025 Component Abuse Challenge: Overdriven LEDs Outshine The Sun”

Share Your Projects: Imperfectionism

Everyone has a standard for publishing projects, and they can get pretty controversial. We see a lot of people complain about hacks embedded in YouTube videos, social media threads, Discord servers, Facebook posts, IRC channels, different degrees of open-sourcing, licenses, searchability, and monetization. I personally have my own share of frustrations with a number of these factors.

It’s common to believe that hacking as a culture doesn’t thrive until a certain set of conditions is met, and everyone has their own set of conditions in mind. My own dealbreaker, as you might’ve seen, is open-sourcing of code and hardware alike – I think that’s a sufficiently large barrier for hacking being repeatable, and repeatability is a big part of how hacking culture spreads.

This kind of belief is often self-limiting. Many people believe that their code or PCB source file is not a good contribution to hacking culture unless it meets a certain cleanliness or completeness standard. This is understandable, and I do that, too.

Today, I’d like to argue against my own view, and show how imperfect publishing helps build hacking culture despite its imperfections. Let’s talk about open-source in context of 3D printing.

Continue reading “Share Your Projects: Imperfectionism”

DIY Powerwall Blows Clouds, Competition Out Of The Water

Economists have this idea that we live in an efficient market, but it’s hard to fathom that when disposable vapes are equipped with rechargeable lithium cells. Still, just as market economists point out that if you leave a dollar on the sidewalk someone will pick it up, if you leave dollars worth of lithium batteries on the sidewalk, [Chris Doel] will pick them up and build a DIY home battery bank that we really hope won’t burn down his shop.

Testing salvaged batteries.

The Powerwall-like arrangement uses 500 batteries salvaged from disposable vapes. His personal quality control measure  while pulling the cells from the vapes was to skip any that had been discharged past 3 V. On the other hand, we’d be conservative too if we had to live with this thing, solid brick construction or not.

That quality control was accomplished by a clever hack in and of itself: he built a device to blow through the found vapes and see if they lit up. (That starts at 3:20 in the vid.) No light? Not enough voltage. Easy. Even if you’re not building a hoe powerbank, you might take note of that hack if you’re interested in harvesting other people’s deathsticks for lithium cells. The secret ingredient was the pump from a CPAP machine. Actually, it was the only ingredient.)

In another nod to safety, he fuses every battery and the links between the 3D printed OSHA unapproved packs. The juxtoposition between janky build and careful design nods makes this hack delightful, and we really hope [Chris] doesn’t burn down his shed, because like the cut of his jib and hope to see more hacks from this lad. They likely won’t involve nicotine-soaked lithium, however, as the UK is finally banning disposable vapes.

In some ways, that’s a pity, since they’re apparently good for more than just batteries — you can host a website on some of these things. How’s that for market efficiency?

Continue reading “DIY Powerwall Blows Clouds, Competition Out Of The Water”

Japan’s Forgotten Analog HDTV Standard Was Well Ahead Of Its Time

When we talk about HDTV, we’re typically talking about any one of a number of standards from when television made the paradigm switch from analog to digital transmission. At the dawn of the new millenium, high-definition TV was a step-change for the medium, perhaps the biggest leap forward since color transmissions began in the middle of the 20th century.

However, a higher-resolution television format did indeed exist well before the TV world went digital. Over in Japan, television engineers had developed an analog HD format that promised quality far beyond regular old NTSC and PAL transmissions. All this, decades before flat screens and digital TV were ever seen in consumer households!

Continue reading “Japan’s Forgotten Analog HDTV Standard Was Well Ahead Of Its Time”

Countdown To Pi 1 Loss Of Support, Activated

The older Raspberry Pi boards have had a long life, serving faithfully since 2012. Frankly, their continued support is a rarity these days — it’s truly incredible that an up-to-date OS image can still be downloaded for them in 2025. All good things must eventually come to an end though, and perhaps one of the first signs of that moment for the BCM2385 could be evident in Phoronix’s report on Debian dropping support for MIPS64EL & ARMEL architectures. Both are now long in the tooth and other than ARMEL in the Pi, rarely encountered now, so were it not for the little board from Cambridge this might hardly be news. But what does it mean for the older Pi?

It’s first important to remind readers that there’s no need to panic just yet, as the support is going not for the mainstream Debian releases, but the unstable and experimental ones. The mainstream Debian support period for the current releases presumably including the Debian-based Raspberry Pi OS extends until 2030, which tallies well with Raspberry Pi’s own end-of-life date for their earlier boards. But it’s a salutary reminder that that the clock’s ticking, should (like some of us) you be running an older Pi.  You’ve got about five years.