This project gives a whole new meaning to DIY PC. We don’t know how capable you were as a teenager, but could you have designed your own Ryzen-based mini PC?
Whilst making repairs to laptop internals, [Dominik Baroński] was busy taking notes. Modern super-integrated laptop PCs have reached the point where all the functions of a complete PC are embedded in a single chip. But it’s a big, complicated chip with very specific feeding and care needs. Once you’ve figured out what it needs, it ‘merely’ remains to supply it power, hook up some DDR4 RAM, PCIe storage, and some USB ports, and you’re away. It sounds easy when you say it like that, but do not underestimate how difficult it is to create such a board—or even to populate it by hand—yet that’s precisely what [Dominik] has achieved.
Before a spectrometer can do any useful work, it needs to be calibrated to identify wavelengths correctly. This is usually done by detecting several characteristic peaks or dips in a well-known light source and using these as a reference to identify other wavelengths. The most common reference for hobbyists is the pair of peaks produced by a mercury-vapor fluorescent light, but a more versatile option is a xenon-bulb light source, such as [Markus Bindhammer] made in his latest video.
A xenon gas discharge produces a wide band of wavelengths, which makes it a useful illumination source for absorbance spectroscopy. Even better, Xenon also has several characteristic spikes in the infrared region. For his light source, [Markus] used an H7 xenon bulb meant for a vehicle headlight. The bulb sits in the center of the source, with a concave mirror behind it and a pair of converging lenses in front of it. The converging lenses focus the light onto the end of an optical cable made of PMMA to better transmit UV. A few aluminum brackets hold all the parts in place. The concave mirror is made out of a cut-open section of aluminum pipe. The entire setup is mounted inside an aluminum case, with a fan on one end for cooling. To keep stray light out of the case, a light trap covers the fan’s outlet.
Multitasking is something we take for granted these days. Just about every computer we use, from our desktops to our phones, is capable of multitasking. It might sound silly to implement multitasking on lower-spec machines from many decades ago, given their limited resources, but it can be done, as [bchiha] demonstrates on a Z80-based machine.
[bchiha] has achieved pre-emptive multitasking on the TEC-1G Z80 computer, a modern reimagining of the classic Talking Electronics TEC-1 from the 1980s. The proof of concept code allows running up to eight separate tasks at once. Task switching runs on interrupts, triggered at approximately 50 Hz. When an interrupt fires, the CPU registers are transferred onto that task’s stack, and the next task’s stack is swapped to the stack pointer to allow execution of the new task to proceed. There is an overhead, of course, with [bchiha] noting that the task swapping routine itself takes about 430 clock cycles to run in between tasks.
The concept is simple—it’s a small unit, roughly the size of a brick, which streams high-quality audio. It’s based around an ESP32, which pulls in digital audio over Wi-Fi or Ethernet. The microcontroller is hooked up to a TAS5825M DAC, which comes with a built-in amplifier for convenience. The Esparagus is designed for integration with Home Assistant, allowing for easy control as part of a smart home setup. It’s also compatible with Spotify Connect, AirPlay, and Snapcast—the latter of which provides excellent sync when using multiple units across several rooms.
The solar-powered quadcopter from below. (Credit: Luke Maximo Bell)
One of the most frustrating parts about flying a quadcopter is having to regularly swap battery packs, as this massively limits what you can do with said quadcopter, never mind its effective range. Obviously, having the sun power said quadcopter during a nice sunny day would be a much better experience, but how workable is this really? While airplanes have used solar power to stay aloft practically indefinitely, a quadcopter needs significantly more power, so is it even possible? Recently, [Luke Maximo Bell] set out to give it a whirl.
His quadcopter build uses a large but very lightweight carbon fiber frame, with large 18″ propellers. This provides the required space and lift for the solar panel array, which uses 27 razor-thin panels in a 9×3 grid configuration supported by a lightweight support frame.
Due to the lightweight construction, the resulting quadcopter actually managed to fly using just the direct power from the panels. It should be noted however that it is an exceedingly fragile design, to the point that [Luke]’s cat broke a panel in the array when walking over it while it was lying upside-down on a table.
After this proof of concept, [Luke] intends to add more panels, as well as a battery to provide some buffer and autonomous flying hardware, with the goal of challenging the world record for the longest flying drone. For the rest of us, this might make for a pretty cool idea for a LoRaWAN mesh node or similar, where altitude and endurance would make for a great combo.
For our 2025 Component Abuse Challenge there have been a set of entries which merely use a component for a purpose it wasn’t quite intended, and another which push misuse of a part into definite abuse territory, which damages or fundamentally changes it. [Ken Yap]’s use of a transistor base-emitter junction as a voltage reference certainly fits into the latter category.
If you forward bias a base-emitter junction, it will behave as a diode, which could be used as a roughly 0.7 volt reference. But this project is far more fun than that, because it runs the junctions in reverse biased breakdown mode. Using one of those cheap grab bags of transistor seconds, he finds that devices of the same type maintain the same voltage, which for the NPN devices he has works out at 9.5 volts and the PNP at 6.5. We’re told it damages their operation as transistors, but with a grab bag, that’s not quite the issue.
Pinball machines have something for everyone. They’re engaging, fast-paced games available in a variety of sizes and difficulties, and legend has it that they can be played even while deaf and blind. Wizardry aside, pinball machines have a lot to offer those of us around here as well, as they’re a complex mix of analog and digital components, games, computers, and artistry. [Daniele Tartaglia] is showing off every one of his skills to build a tabletop pinball machine completely from the ground up.