Retro Computing Coding Competition Still Open

There’s still time to enter Octojam 10, a competition to write a new program for a rather old (and virtual) machine: the CHIP-8. This interpreted language on a virtual machine was used in the 1970s and 1980s to write games that could run on several consoles, such as the COSMAC VIP. Since then, a community of tinkerers has grown up around CHIP-8 and figuring out how to get the most out of the minimal resources the machine gives you.

Continue reading “Retro Computing Coding Competition Still Open”

Cerberus 2080 — Three-Headed Retro Computing Project

For seven months, [Bernardo Kastrup] at [TheByteAttic] has been realizing his childhood dream of building his own computer. It was this dream that steered him into the field of computer design at the age of 17. After thirty years in the industry, he finally has some time to design the computer he dreamt about as a kid. His requirements are ambitious: fully open design, gate-level details, thru-hole or PLCC for easy hacking, well-established processors with existing tool chains, low-cost development tools for CPLDs, no FPGA, standard ITX case compatible, and so on. He quite reasonably decides to use more modern electronics for video (VGA), keyboard (PS/2), and program storage (flash drive). Along the way, he chooses to put three processors on the board instead of one:

  • Zilog Z84C0010 (Z80)
  • WDC W65C0256 (6502)
  • AVR ATMEGA328 (RISC Controller)

When coming up with the concept and requirements, [Bernardo] had a fictitious alternate history in mind — one where there were follow-ups to the ZX80, PET/CBM, or TRS-80 from the late 1970s that were extensions to the original systems. But he also wanted a clean design, without cost-cutting gimmicks, in order to make it easier for learners to focus on computing itself — a didactic architecture, as he describes it. Turn the crank for seven long months, and we have the Cerberus 2080. [Bernardo] has put the design on GitHub, and made a video series out of the whole process, of which the introduction video is below the break. There’s even an online emulator developed by retro hacker  [Andy Toone].

We wrote about the 6502-based ERIC-1 project back in 2014 which shared the bus with an ATMEGA simulating ROM. The Minty Z80 project from 2019 also uses a similar technique. Thanks to [Frédéric] for sending us the tip.

Continue reading “Cerberus 2080 — Three-Headed Retro Computing Project”

Solving A Retrocomputing Mystery With An Album Cover: Greengate DS:3

[Bea Thurman] had a retro music conundrum. She loved the classic Greengate DS:3 sampler, but couldn’t buy one, and couldn’t find enough information to build her own. [Bea’s] plea for help caught the attention of [Eric Schlaepfer], aka  [TubeTime]. The collaboration that followed ultimately solved a decades-old mystery. 

In the 1980s, there were two types of musicians: Those who could afford a Fairlight CMI and everyone else. If you were an Apple II owner, the solution was a Greengate DS:3. The DS:3 was a music keyboard and a sampler card for the Apple II+ (or better). The plug-in card was a bit mysterious, though. The cards were not very well documented, and only a few survive today. To make matters worse, some chips had part numbers sanded off. It was a bit of a mystery until [Bea and Tubetime] got involved. 

Continue reading “Solving A Retrocomputing Mystery With An Album Cover: Greengate DS:3”

Making Intel Mad, Retrocomputing Edition

Intel has had a deathgrip on the PC world since the standardization around the software and hardware available on IBM boxes in the 90s. And if you think you’re free of them because you have an AMD chip, that’s just Intel’s instruction set with a different badge on the silicon. At least AMD licenses it, though — in the 80s there was another game in town that didn’t exactly ask for permission before implementing, and improving upon, the Intel chips available at the time.

The NEC V20 CPU was a chip that was a drop-in replacement for the Intel 8088 and made some performance improvements to it as well. Even though the 186 and 286 were available at the time of its release, this was an era before planned obsolescence as a business model was king so there were plenty of 8088 systems still working and relevant that could take advantage of this upgrade. In fact, the V20 was able to implement some of the improved instructions from these more modern chips. And this wasn’t an expensive upgrade either, with kits starting around $16 at the time which is about $50 today, adjusting for inflation.

This deep dive into the V20 isn’t limited to a history lesson and technological discussion, though. There’s also a project based on Arduino which makes use of the 8088 with some upgrades to support the NEC V20 and a test suite for a V20 emulator as well.

If you had an original IBM with one of these chips, though, things weren’t all smooth sailing for this straightforward upgrade at the time. A years-long legal battle ensued over the contents of the V20 microcode and whether or not it constituted copyright infringement. Intel was able to drag the process out long enough that by the time the lawsuit settled, the chips were relatively obsolete, leaving the NEC V20 to sit firmly in retrocomputing (and legal) history.

Ask Hackaday: Why Retrocomputing?

I recently dropped in on one of the Vintage Computer Festival events, and it made me think about why people — including myself — are fascinated with old computer technology. In my case, I lived through a lot of it, and many of the people milling around at VCF did too, so it could just be nostalgia. But there were also young people there.

Out of curiosity, I asked people about the appeal of the old computers on display there. Overwhelmingly, the answer was: you can understand the whole system readily. Imagine how long it would take you to learn all the hardware and software details of your current desktop computer CPU. Then add your GPU, the mass storage controllers, and your network interface. I don’t mean knowing the part numbers, specs, and other trivialities. I mean being able to program, repair, and even enhance it.

Continue reading “Ask Hackaday: Why Retrocomputing?”

This Snappy 8-Bit Microcomputer Brings The Speed To Retrocomputing

When the need for speed overcomes you, thoughts generally don’t turn to 8-bit computers. Sure, an 8-bit machine is fun for retro gameplay and reliving the glory days, and there certainly were some old machines that were notably faster than the others. But raw computing power isn’t really the point of retrocomputing.

Or is it? [Bernardo Kastrup] over at The Byte Attic has introduced an interesting machine called the Agon Light, an 8-bit SBC that’s also a bit like a microcontroller. The machine has a single PCB that looks about half as big as an Arduino Uno, and sports some of the same connectors and terminals around its periphery. The heart of the Agon Light is an eZ80 8-bit, 18.432 MHz 3-stage pipelined CPU, which is binary compatible with the Z80. It also has an audio-video coprocessor, in the form of an ESP32-Pico-D4, which supports a 640×480 64-color display and two mono audio channels. There’s no word we could find of whether the ESP32’s RF systems are accessible; it would be nice, but perhaps unnecessary since there are both USB ports and a PS/2 keyboard jack. There’s also a pin header for 20 GPIOs as well as I2C, SPI, and UART for serial communication.

The lengthy video below goes into all the details on the Agon Light, including the results of benchmark testing, all of which soundly thrash the usual 8-bit suspects. The project is open source and all the design files are available, or you can get a PCB populated with all the SMD components and just put the through-hole parts on. [Bernardo] is also encouraging people to build and sell their own Agon Lights, which seems pretty cool too. It honestly looks like a lot of fun, and we’re looking forward to seeing what people do with this.

Continue reading “This Snappy 8-Bit Microcomputer Brings The Speed To Retrocomputing”

Retrocomputing, Time To Hang Up The Original Hardware?

For those of us with penchant for older technology, there’s something special about operating with older hardware. Whether it’s a decades-old camera, a vintage keyboard, or a home computer from the 1980s, the modern equivalent just doesn’t quite compare. But working with older parts definitely isn’t for the faint-hearted, as the passage of time has taken its toll on their reliability. Is it time to recognize that the supply of replacement vintage parts is not infinite, and to switch from using original hardware to more modern alternatives? [Retro Recipes] poses this question after a particularly difficult-to-find Amiga fault, and discusses it while evaluating a replacement Amiga made entirely from modern parts.

The new Amiga in question is a recreation of an A1200 with a re-manufactured case and keyboard, and the guts of an A500 Mini retro console taking the place of the Commodore board. He goes through the process of making an Amiga hard drive image on a USB drive using the image from his original drive in his teenage years, and boots it both on the 500 Mini based machine and on the UAE emulator on a Mac laptop. You can follow him in the video below the break.

We can see the logic in treating original hardware as a precious resource that’s not to be run up for fear of breaking it, but by the same token we’re still standing by that first sentence. But should the enjoyment of an older machine be limited only to those who have an original? We think not, so if enjoying an Amiga without an Amiga can be as good as the real thing then we’re all for it.

Of course, for those whose original Amigas have already broken, there are other ways to bring them back.

Continue reading “Retrocomputing, Time To Hang Up The Original Hardware?”