Car Security System Monitors Tiny Voltage Fluctuations

As the old saying goes, there’s no such thing as a lock that can’t be picked. However, it seems like there are plenty of examples of car manufacturers that refuse to add these metaphorical locks to their cars at all — especially when it comes to securing the electronic systems of vehicles. Plenty of modern cars are essentially begging to be attacked as a result of such poor practices as unencrypted CAN busses and easily spoofed wireless keyfobs. But even if your car comes from a manufacturer that takes basic security precautions, you still might want to check out this project from the University of Michigan that is attempting to add another layer of security to cars.

The security system works like many others, by waiting for the user to input a code. The main innovation here is that the code is actually a series of voltage fluctuations that are caused by doing things like turning on the headlights or activating the windshield wipers. This is actually the secondary input method, though; there is also a control pad that can mimic these voltage fluctuations as well without having to perform obvious inputs to the vehicle’s electrical system. But, if the control pad isn’t available then turning on switches and lights to input the code is still available for the driver. The control unit for this device is hidden away, and disables things like the starter motor until it sees these voltage fluctuations.

One of the major selling points for a system like this is the fact that it doesn’t require anything more complicated than access to the vehicle’s 12 volt electrical system to function. While there are some flaws with the design, it’s an innovative approach to car security that, when paired with a common-sense approach to securing modern car technology, could add some valuable peace-of-mind to vehicle ownership in areas prone to car theft. It could even alleviate the problem of cars being stolen via their headlights.

Continue reading “Car Security System Monitors Tiny Voltage Fluctuations”

Bridging A Gap Between LLMs And Programming With TypeChat

By now, large language models (LLMs) like OpenAI’s ChatGPT are old news. While not perfect, they can assist with all kinds of tasks like creating efficient Excel spreadsheets, writing cover letters, asking for music references, and putting together functional computer programs in a variety of languages. One thing these LLMs don’t do yet though is integrate well with existing app interfaces. However, that’s where the TypeChat library comes in, bridging the gap between LLMs and programming.

TypeChat is an experimental MIT-licensed library from Microsoft which sits in between a user and a LLM and formats responses from the AI that are type-safe so that they can easily be plugged back in to the original interface. It does this by generating JSON responses based on user input, making it easier to take the user input directly, run it through the LLM, and then use the output directly in another piece of code. It can be used for things like prototyping prompts, validating responses, and handling errors. It’s also not limited to a single LLM and can be fairly easily modified to work with many of the existing models.

The software is still in its infancy but does hope to make it somewhat easier to work between user inputs within existing pieces of software and LLMs which have quickly become all the rage in the computer science world. We expect to see plenty more tools like this become available as more people take up using these new tools, which have plenty of applications beyond just writing code.

Game Boy-Style Camera For Playdate

The Game Boy Camera, while perhaps not the most technologically advanced piece of equipment, left a huge mark on video game and electronics culture. The grayscale photographs are still highly prized, and there are an untold number of projects which interface with original hardware to download authentic Game Boy Camera pictures to modern computers. There are others that look to recreate the feel and style of these images, and the latest comes to us on a Game Boy-like platform as well, the Playdate.

[t0mg] is the creator of this project, utilizing a OV7670 camera module sending data to a Teensy 4.1 which interfaces with the Playdate via USB. The images recorded on the Playdate are 1-bit, slightly different than the 2-bit images the Game Boy Camera was capable of. The case of the camera also physically matches up well with the small console, using magnets to secure it to the device either in normal camera mode, in reverse for selfie mode, and can also support the console in “cover” mode as a way of storing the console to protect the screen. A companion application needs to run on the Playdate to get this all up and running, but with that and a battery plenty of retro-style images are ready to be captured.

All of the source for this project is available on the project’s GitHub page for anyone ready to experience some nostalgia or just experiment with a small camera like this. It’s a clean build that takes advantage of the Playdate’s open-source nature, through which we’ve seen the console turned into a typewriter and inspire other builds like this one-off handheld with a crank-style controller.

Continue reading “Game Boy-Style Camera For Playdate”

Conductive Gel Has Potential

There are some technologies first imagined in the Star Trek universe have already come to exist in the modern day. Communicators, tablet computers, and computer voice recognition are nearly as good as seen in the future, and other things like replicators and universal translators are well on their way. Star Trek: Voyager introduced a somewhat ignored piece of futuristic technology, the bio-neural gel pack. Supposedly, the use of an organic gel improved the computer processing power on the starship. This wasn’t explored too much on the series, but [Tom] is nonetheless taking the first steps to recreating this futuristic technology by building circuitry using conductive gel.

[Tom]’s circuitry relies on the fact that salts in a solution can conduct electricity, so in theory filling a pipe or tube with a saline solution should function similarly to a wire. He’s also using xanthan gum to increase viscosity. While the gel mixture doesn’t have quite the conductivity of copper, with a slight increase in the supplied voltage to the circuit it’s easily able to be used to light LEDs. Unlike copper, however, these conductive gel-filled tubes have some unique properties. For example, filling a portion of the tube with conductive gel and the rest with non-conductive mineral oil and pushing and pulling the mixture through the tube allows the gel to move around and engage various parts of a circuit in a way that a simple copper wire wouldn’t be able to do.

In this build specifically, [Tom] is using a long tube with a number of leads inserted into it, each of which correspond to a number on a nixie tube. By moving the conductive gel, surrounded by mineral oil, back and forth through the tube at precise intervals each of the numbers on the nixie tube can be selected for. It’s not yet quite as good as the computer imagined in Voyager but it’s an interesting concept nonetheless, not unlike this working replica of a communicator badge.

Continue reading “Conductive Gel Has Potential”

GLASNOST Is A Computer That Makes Transparency A Priority

We live in a world where most of us take the transistor for granted. Within arm’s length of most people reading this, there are likely over ten billion of them sending electrons in every direction. But the transistor was not the first technology to come around to make the computer a possibility, but if you go to the lengths of building something with an alternative, like this vacuum tube computer, you may appreciate them just a tiny bit more.

This vacuum tube computer is called GLASNOST, which according to its creator [Paul] means “glass, no semiconductors” with the idea that the working parts of the computer (besides the passive components) are transparent glass tubes, unlike their opaque silicon-based alternatives. It boasts a graphical display on an oscilloscope, 4096 words of memory, and a custom four-bit architecture based only on NOT, NOR, and OR gates which are simpler to create with the bulky tubes.

The project is still a work in progress but already [Paul] has the core memory figured out and the computer modeled in a logic simulator. The next steps are currently being worked through which includes getting the logic gates to function in the real world. We eagerly await the next steps of this novel computer and, if you want to see one that was built recently and not in the distant past of the 1950s, take a look at the Electron Tube New Automatic Computer that was completed just a few years ago.

Remote Code Execution On An Oscilloscope

There are a huge number of products available in the modern world that come with network connectivity now, when perhaps they might be better off with out it. Kitchen appliances like refrigerators are the classic example, but things like lightbulbs, toys, thermostats, and door locks can all be found with some sort of Internet connectivity. Perhaps for the worse, too, if the security of these devices isn’t taken seriously, as they can all be vectors for attacks. Even things like this Rigol oscilloscope and its companion web app can be targets.

The vulnerability for this oscilloscope starts with an analysis of the firmware, which includes the web control application. To prevent potentially bricking a real oscilloscope, this firmware was emulated using QEMU. The vulnerability exists in the part of the code which involves changing the password, where an attacker can bypass authentication by injecting commands into the password fields. In the end, the only thing that needs to be done to gain arbitrary code execution on the oscilloscope is to issue a curl command directed at the oscilloscope.

In the end, [Maunel] suggests not connecting this oscilloscope to the Internet at all. He has informed the producer about it but as of this writing there has not been a resolution. It does, however, demonstrate the vulnerabilities that can be present in network-connected devices where the developers of the software haven’t gone to the lengths required to properly secure them for use with the modern Internet. Even things not connected to a traditional Internet connection can be targets for attacks.

Adapter Board Expands The Pi Zero

The standard Raspberry Pi computers have been in short supply for a while now, so much so that people are going to great lengths to find replacements. Whether it’s migrating to alternative single-board computers or finding clones of the Pi that are “close enough”, there are solutions out there. This method of building a full-size Raspberry Pi with all of the bells and whistles using the much-less-in-demand Pi Zero also stands out as a clever solution.

[SpookyGhost] didn’t build this one himself, but he did stumble across it and write a pretty extensive how-to and performance evaluation for the board, which can be found here. The adapter connects to the Zero’s HDMI and USB ports, and provides all the connectors you’d expect from a larger Pi such as the 3B. It’s not a perfect drop-in replacement though — you don’t get the 3.5 mm audio jack, and the micro SD card location doesn’t match up with where it should be on a “real” Pi.

All things considered, this is one of those solutions that seems obvious in retrospect but we still appreciate its elegance. It might disappear as soon as chip shortages stop being an issue, but for now we’ll take any solutions we can. If you don’t already have a Pi Zero on hand, we’ve seen some other successes replacing them with thin clients or even old smartphones.