Controlling A Building Sized Pipe Organ With Midi

Musical instruments come in all shapes and sizes. For sheer scale and complexity though, you can’t beat pipe organs. [Rob Scallon] visited the Fourth Presbyterian Church in Chicago to look at their massive pipe organ which boasts over 8000 individual pipes. He also discovered that it has a MIDI interface, and off course hooked up his laptop to play the Mario Bros theme song.

This organ is actually the third one the church has had, and was completed in 2016. Its capabilities are impressive, but the engineering side of it is what really blew us away. Every pipe is unique to allow it to recreate the sound of almost an entire orchestra, and the “control station” looks a bit like the cockpit of modern airliner in terms of complexity. The organ covers multiple stories across multiple parts of the church and every single pipe and part needs to be accessible for tuning and maintenance, which is almost a full time job. Check out the first video after the break for a full demonstration and tour of this incredible machine by [John Sherer], the church’s music director and organist.

The second video after the break goes through the process of hooking up a laptop to the organ after getting a technician to completely wire up the MIDI interface. They go full music geek as they marry ancient and modern music technology. [Rob] says it multiple times, and we have to believe that you need to be in the building to truly experience the sound. Let us know in the comments if any readers have heard this organ in person.

Continue reading “Controlling A Building Sized Pipe Organ With Midi”

What Day Is It?

With much of the world staying at home at the moment, keeping track of our sanity and the day of the week is a bit of a challenge, especially without the normal daily routine to hold onto. To help with one of these problems, [phreakmonkey] has built a Day Clock. As the name suggests, it’s only purpose is to show what day of the week it is.

Avery simple device, the two main components are a servo and a Wemos D1 Mini, the popular ESP8266-based dev board. Using the NTPtimeESP library, it gets day of the week from the internet, and moves the servo to indicate the current day on a 3D printed face. Most readers should be able to whip one up in an hour or two, which can help keep sane in these interesting times.

For another Corona clock, check out [Elliot Williams]’ version that helps with keeping domestic peace. If you want to do something to combat the spread of the current epidemic, you can build a few face shields, make your idle computer available for Folding@Home or sew a few masks. Every bit helps.

Typing By Slamming Your Laptop Closed. Repeatedly

Do you sometimes feel that your custom mechanical keyboard is not quite loud enough to proclaim your superior hacking powers? Or do you need a more forceful way shout in all caps at someone who is wrong on the internet? For all this and more, [Jesse Li] has got you covered, with a set of bash scripts that allows you to type by slamming your laptop closed repeatedly, using Morse code.

Not the fastest way to type, but definitely the most forceful

The scripts are quite simple, and work receiving the lid open/close events from ACPI (Advanced Configuration and Power Interface), recording the open and close timestamp and converting the timing to dots and dashes. After slamming to the required rhythm, you keep the lid open to see the character appear.

Why would want this? Well, you can now type the letter E by closing your laptop, instead of locking it. Maybe use it to send an emergency message while you’re being held by terrorists in a B-grade action movie. Otherwise, we think this is just an entertaining little hack that’s probably the product of quarantine induced boredom.

Morse code, otherwise known as CW, is still in surprisingly widespread use by ham radio operators, because it’s good at getting messages across intercontinental distances when signal conditions are bad and CW-only ham radio gear is cheap and easy to build yourself. We’ve also covered the Koch Method of learning CW, so don’t be afraid to dabble a bit during the quarantine.

Autonomous 3D Rover With Tank Tracks Rules The Fields. Almost

Scope creep is a real pain in the real world, but for projects of passion it can have some interesting consequences. [rctestflight] was playing around with 3D printed rover gearboxes, which morphed into a 3D printed tank build.

[rctestflight]’s previous autonomous rover project had problems with the cheap geared motors, and he started experimenting with his own gearbox designs to use with lower RPM / Kv brushless drone motors. The tank came about because he wanted a simple vehicle to test his design. “Simple” went out the window pretty quickly and the final product was completely 3D printed except for the fasteners, axles, bearings, and electronics.

The tracks and gears are noisy, but it works quite well. On outdoor tests [rctestflight] did find that the tracks were prone to hooking on vines and branches, which in one case caused it to throw a track after the aluminium shaft bent. An Ardurover navigation system was added and with a 32 Ah battery was able to run autonomously for an entire day and there was surprisingly little wear on 3D printed gearbox and tracks afterward. All the STL files are up on Thingiverse, but [rctestflight] recommends waiting for an upcoming update because he discovered flaws in the design after filming the video after the break.

For a slightly more complex and expensive rover, check out our coverage of Perseverance, NASA’s MARS 2020 Rover. Continue reading “Autonomous 3D Rover With Tank Tracks Rules The Fields. Almost”

Equipping A Workshop Using Plywood And Handheld Power Tools

Properly equipping a home workshop for the DIY discipline of your choice can often end up costing more than we would like to admit, and is a never ending process. [JSK-Koubou] is doing exactly that, except he is building almost all of his equipment using plywood, hand-held power tools and a LOT of attention to detail.

As far as we can tell the series really got started with a humble hand-held circular saw guide, with every tool being used to build more tools. So far the list boasts more than 50 different videos of tools built around a drill, circular saw, jigsaw, router, planar or grinder. This includes a wood lathe, drill press, jointer and various drills guides and sanders. The level of precision each tool almost eye watering. He even pulls out a dial gauge on some builds to check alignment. We honestly didn’t know plywood equipment could look this good and work so well. Check out the YouTube playlist after the break to see for yourself.

Previously we also covered [JSK-Koubou]’s set of perfectly tuned wooden speaker enclosures, the craftsmanship is really something to behold. For more impressive homebuilt hardware, take a look at this 8-axis camera crane built by another YouTuber for his home shop. Continue reading “Equipping A Workshop Using Plywood And Handheld Power Tools”

Compliant Quadruped Legs Using Servos

Walking robots that move smoothly are tricky to build and usually involve some sort of compliant leg mechanism — a robot limb that can rebound like natural physiology for much better movement than what a stiff machine can accomplish. In his everlasting quest to build a real working robot dog, [James Bruton] is working on an affordable and accessible Mini Robot Dog, starting with the compliant leg mechanism.

The 3D printed leg mechanism has two joints (hip and knee), with an RC servo to drive each. To make the joints compliant, both are spring-loaded to absorb external forces, and the deflection is sensed by a hall effect sensor with moving magnets on each side. Using the inputs from the hall effect sensor, the servo can follow the deflection and return to its original position smoothly after the force dissipates. This is a simple technique but it shows a lot of promise. See the video after the break.

A project can sometimes develop a life of its own, or in the case of [James]’s OpenDog, spawn experimentally evolving offspring. This is number four, and it’s designed  to be a platform for learning how to make a quadruped walk properly, and to be simple and cheap enough for others to build. We’re looking forward to seeing how it turns out.

If you missed it, also check out this robot’s weird sibling, self-balancing Sonic.

Continue reading “Compliant Quadruped Legs Using Servos”

Screwy Math For Super Fine Adjustments: Differential Screws

For any sort of precision machine, precision adjustability is required. For the hacker this usually involves an adjustment screw, where the accuracy is determined by the thread pitch. This was not good enough for [Mark Rehorst] who wanted adjustment down to 10 μm for his 3D printer’s optical end-stop, so he made himself a differential adjustment screw.

Tiny adjustment can be made to the green block due to the thread pitch differences

Differential screws work by having two threads with a slightly different pitch on the same shaft. A nut on each section of thread is prevented from rotating in relation to the other, and when the screw is turned their relative position will change only as much as the difference between the two thread pitches.

The differential screw in this case started life as a normal M5 bolt with a 0.8 mm thread pitch. [Mark] machined and threaded section of the bolt down to a M4 x 0.7 mm thread. This means he can get 0.1 mm (100 μm) of adjustment per full rotation. By turning the bolt 1/10 rotation, the  relative movement comes down to 10 μm.

This mechanism is not new, originating from at least 1817. If you need fine adjustments on a budget, it’s a very elegant way to achieve it and you don’t even need a lathe to make your own. You can partially drill and tap a coupling nut, or make a 3D printed adapter to connect two bolts.

Fabricating precision tools on a budget is challenging but not impossible. We’ve seen some interesting graphite air bearings, as well as a 3D printed microscope with a precision adjustable stage.