Hackaday Links Column Banner

Hackaday Links: June 23, 2024

When a ransomware attack targets something like a hospital, it quickly becomes a high-profile event that understandably results in public outrage. Hospitals are supposed to be backstops for society, a place to go when it all goes wrong, and paralyzing their operations for monetary gain by taking over their information systems is just beyond the pale. Tactically, though, it makes sense; their unique position in society seems to make it more likely that they’ll pay up.

Which is why the ongoing cyberattack against car dealerships is a little perplexing — can you think of a less sympathetic victim apart from perhaps the Internal Revenue Service? Then again, we’re not in the ransomware business, so maybe this attack makes good financial sense. And really, judging by the business model of the primary target of these attacks, a company called CDK Global, it was probably a smart move. We had no idea that there was such a thing as a “Dealer Management System” that takes care of everything from financing to service, and that shutting down one company’s system could cripple an entire industry, but there it is.

Continue reading “Hackaday Links: June 23, 2024”

An Arduino Nano Clone In A DIP-Sized Footprint

Nobody doubts the utility of the Arduino Nano and its many clones, and chances are good you’ve got at least one or two of the tiny dev boards within arm’s reach right now. But as small as it is, the board still takes up a fair amount of real estate, especially on solderless breadboards during the prototyping phase of a project. Wouldn’t it be nice to shrink down the Nano just a bit and regain a couple of rows for plugging in components and jumpers?

It looks like [Albert van Dalen] thought so, and he managed to get a Nano’s functionality — and then some — onto a DIP-26 footprint. The aptly named “Nano DIP,” which at 33 mm x 10 mm — about the same size as the ATmega328 on the Arduino Uno — will tickle the miniaturization fans out there. The board is built around an ATtiny3217 and has almost all of the Nano’s features, like a USB port, reset button, built-in LEDs, 5 V regulator, and preloaded bootloader. Its big extra feature is the 350-kilosamples-per-second 8-bit DAC, while sacrificing external crystal pins and a 3.3 V regulator.

To make the board cheap enough to manufacture, [Albert] elected a minimum component size of 0402, which made squeezing all the parts onto the board challenging. The MCU barely fits between the header pin pads, and the Micro USB jack had to be a vertical-mount type. It does the business, though, so if you’re looking to free up a little breadboard space, check it out.

Hackaday Podcast Episode 276: A Mac On A Pico, Ropes On The Test Stand, A Battleship Up On Blocks

The week gone by was rich with fun hacks, and Elliot and Dan teamed up this time around to run them down for everyone. The focus this week seemed to trend to old hardware, from the recently revived Voyager 1 to a 1940s car radio, a homebrew instrument from 1979, a paper tape reader, and a 128k Mac emulator built from an RP2040.

Newer hacks include a 3D-printed bottle labeler, a very hackable smart ring, and lessons learned about programming robots. We also took a look at turning old cell phones into Linux machines, making sure climbing ropes don’t let you down, and snooping on orbital junk with a cool new satellite.

We wrapped things up with a discussion of just how weird our solar system is, and Dan getting really jealous about Tom Nardi’s recent trip to see the battleship New Jersey from an up close and personal perspective.

 

Worried about attracting the Black Helicopters? Download the DRM-free MP3 and listen offline, just in case.

Continue reading “Hackaday Podcast Episode 276: A Mac On A Pico, Ropes On The Test Stand, A Battleship Up On Blocks”

Electronic Etch-A-Sketch, No Microcontroller Required

In a lot of ways, Etch-A-Sketch is the perfect toy; simple, easy to use, creative, endlessly engaging, and as a bonus, it’s completely mechanical. We find that last attribute to be a big part of its charm, but that’s not to say an electronic version of the classic toy can’t be pretty cool, especially when it’s done without the aid of a microcontroller.

This is one of those “because I can” projects that we always find so interesting, and more so because it wasn’t entirely clear to [BigZaphod] that he had the skills to pull it off. While his initial design centered around a bunch of 8×8 LED matrix displays and a 256×4-bit RAM chip, the rest of it was a lot of hand-waving. After a few experiments with addressing the LEDs, [Zaphod] started filling in the blanks with a refresh circuit using a 555 — naturally — and a pair of counters. Properly debounced encoders for the horizontal and vertical controls came next, along with more counters to track the cursor and a host of other circuits that ended up looking like a “one of each” selection from the 7400-series catalog.

While we do wish for a schematic on this one, it’s still a pretty enjoyable video, and the end product seems to work really well. The electronic version has a few features the original lacks, such as wrapping the cursor to the other side of the screen. We’d imagine that the buttons on the encoders could be put to work, too; perhaps a click could make it so you can move the cursor without leaving a trail behind. That might be a challenge to execute in logic, but then again, that was the point of the whole thing.

Still jonesing for that mechanical Etch-A-Sketch experience? Not a problem.

Continue reading “Electronic Etch-A-Sketch, No Microcontroller Required”

UV-K5 All-Band Mod, Part 2: Easier Install, Better Audio, And Two Antennas

OK, it’s official: the Quansheng UV-K5 is the king of hackable ham radios — especially now that a second version of the all-band hardware and firmware mod has been released, not to mention a new version of the radio.

If you need to get up to speed, check out our previous coverage of the all-band hack for the UV-K5, in which [Paul (OM0ET)] installs a tiny PCB to upgrade the radio’s receiver chip to an Si4732. Along with a few jumpers and some component replacements on the main board, these hardware mods made it possible for the transceiver, normally restricted to the VHF and UHF amateur radio bands, to receive everything down to the 20-meter band, in both AM and single-sideband modulations.

The new mod featured in the video below does all that and more, all while making the installation process slightly easier. The new PCB is on a flexible substrate and is considerably slimmer, and also sports an audio amplifier chip, to make up for the low audio output on SSB signals of the first version. Installation, which occupies the first third of the video below, is as simple as removing one SMD chip from the radio’s main board and tacking the PCB down in its footprint, followed by making a couple of connections with very fine enameled wire.

You could load the new firmware and call it a day at that point, but [Paul] decided to take things a step further and install a separate jack for a dedicated HF antenna. This means sacrificing the white LED on the top panel, which isn’t much of a sacrifice for most hams, to make room for the jack. Most of us would put a small SMA jack in, but [Paul] went for a BNC, which required some deft Dremel and knife work to fit in. He also used plain hookup wire to connect the jack, which sounds like a terrible idea; we’d probably use RG-316, but his mod didn’t sound that bad at all.

Keen to know more about the Quansheng UV-K5? Dive into the reverse-engineered schematics.

Continue reading “UV-K5 All-Band Mod, Part 2: Easier Install, Better Audio, And Two Antennas”

Bent Shaft Isn’t A Bad Thing For This Pericyclic Gearbox

With few exceptions, power transmission is a field where wobbling is a bad thing. We generally want everything running straight and true, with gears and wheels perfectly perpendicular to their shafts, with everything moving smoothly and evenly. That’s not always the case, though, as this pericyclic gearbox demonstrates.

Although most of the components in [Retsetman] model gearboxes seem familiar enough — it’s mostly just a collection of bevel gears, like you’d see inside a differential — it’s their arrangement that makes everything work. More specifically, it’s the shaft upon which the bevel gears ride, which has a section that is tilted relative to the axis of the shaft. It’s just a couple of degrees, but that small bit of inclination, called nutation, makes the ring gear riding on it wobble as the shaft rotates, allowing it to mesh with one or more ring gears that are perpendicular to the shaft. This engages a few teeth at a time, transferring torque from one gear to another. It’s easier to visualize than it is to explain, so check out the video below.

Gearboxes like these have a lot of interesting properties, with the main one being gear ratio. [Retsetman] achieved a 400:1 ratio with just 3D printed parts, which of course impose their own limitations. But he was still able to apply some pretty serious torque. The arrangement is not without its drawbacks, of course, with the wobbling bits naturally causing unwelcome vibrations. That can be mitigated to some degree using multiple rotatins elements that offset each other, but that only seems to reduce vibration, not eliminate it.

[Retsetman] is no stranger to interesting gearboxes, of course, with his toothless magnetic gearboxes coming to mind. And this isn’t the only time we’ve seen gearboxes go all wobbly, either.

Continue reading “Bent Shaft Isn’t A Bad Thing For This Pericyclic Gearbox”

A Brief Look Inside A Homebrew Digital Sampler From 1979

While we generally prefer to bring our readers as much information about a project as possible, sometimes we just have to go with what we see. That generally happens with new projects and work in progress, but it can also happen with old projects. Sometimes very old indeed, as is the case with this digital sampling unit for analog oscilloscopes, circa 1979.

We’ve got precious little to go on with this one other than the bit of eye candy in the video tour below and its description. Luckily, we’ve had a few private conversations with its maker, [Mitsuru Yamada], over the years, enough to piece together a little of the back story here — with apologies for any wrong assumptions, of course.

Built when he was only 19, this sampler was an attempt to build something that couldn’t be bought, at least not for a reasonable price. With no inexpensive monolithic analog-to-digital converters on the market, he decided to roll his own. A few years back he recreated the core of that with his all-discrete successive approximation ADC.

The sampler shown below has an 8-bit SAR ADC using discrete CMOS logic and enough NMOS memory to store 256 samples. You can see the ADC and memory cards in the homebrew card cage made from aluminum angle stock. The front panel has a ton of controls and sports a wide-range attenuator, DC offset, and trigger circuit with both manual and automatic settings.

It’s an impressive build, especially for a 19-year-old with presumably limited resources. We’ve reached out to [Yamada-san] in the hope that he’ll be able to provide more details on what’s under the hood and if this still works after all these years. We’ll pass along whatever we get, but in the meantime, enjoy.

Continue reading “A Brief Look Inside A Homebrew Digital Sampler From 1979”