Homebrew Electron Beam Lithography With A Scanning Electron Microscope

If you want to build semiconductors at home, it seems like the best place to start might be to find a used scanning electron microscope on eBay. At least that’s how [Peter Bosch] kicked off his electron beam lithography project, and we have to say the results are pretty impressive.

Now, most of the DIY semiconductor efforts we’ve seen start with photolithography, where a pattern is optically projected onto a substrate coated with a photopolymer resist layer so that features can be etched into the surface using various chemical treatments. [Peter]’s method is similar, but with important differences. First, for a resist he chose poly-methyl methacrylate (PMMA), also known as acrylic, dissolved in anisole, an organic substance commonly used in the fragrance industry. The resist solution was spin-coated into a test substrate of aluminized Mylar before going into the chamber of the SEM.

As for the microscope itself, that required a few special modifications of its own. Rather than rastering the beam across his sample and using a pattern mask, [Peter] wanted to draw the pattern onto the resist-covered substrate directly. This required an external deflection modification to the SEM, which we’d love to hear more about. Also, the SEM didn’t support beam blanking, meaning the electron beam would be turned on even while moving across areas that weren’t to be exposed. To get around this, [Peter] slowed down the beam’s movements while exposing areas in the pattern, and sped it up while transitioning to the next feature. It’s a pretty clever hack, and after development and etching with a cocktail of acids, the results were pretty spectacular. Check it out in the video below.

It’s pretty clear that this is all preliminary work, and that there’s much more to come before [Peter] starts etching silicon. He says he’s currently working on a thermal evaporator to deposit thin films, which we’re keen to see. We’ve seen a few sputtering rigs for thin film deposition before, but there are chemical ways to do it, too.

Continue reading “Homebrew Electron Beam Lithography With A Scanning Electron Microscope”

Simple Fluorometer Makes Nucleic Acid Detection Cheap And Easy

Back in the bad old days, dealing with DNA and RNA in a lab setting was often fraught with peril. Detection technologies were limited to radioisotopes and hideous chemicals like ethidium bromide, a cherry-red solution that was a fast track to cancer if accidentally ingested. It took time, patience, and plenty of training to use them, and even then, mistakes were commonplace.

Luckily, things have progressed a lot since then, and fluorescence detection of nucleic acids has become much more common. The trouble is that the instruments needed to quantify these signals are priced out of the range of those who could benefit most from them. That’s why [Will Anderson] et al. came up with DIYNAFLUOR, an open-source nucleic acid fluorometer that can be built on a budget. The chemical principles behind fluorometry are simple — certain fluorescent dyes have the property of emitting much more light when they are bound to DNA or RNA than when they’re unbound, and that light can be measured easily. DIYNAFLUOR uses 3D-printed parts to hold a sample tube in an optical chamber that has a UV LED for excitation of the sample and a TLS2591 digital light sensor to read the emitted light. Optical bandpass filters clean up the excitation and emission spectra, and an Arduino runs the show.

The DIYNAFLUOR team put a lot of effort into making sure their instrument can get into as many hands as possible. First is the low BOM cost of around $40, which alone will open a lot of opportunities. They’ve also concentrated on making assembly as easy as possible, with a solder-optional design and printed parts that assemble with simple fasteners. The obvious target demographic for DIYNAFLUOR is STEM students, but the group also wants to see this used in austere settings such as field research and environmental monitoring. There’s a preprint available that shows results with commercial fluorescence nucleic acid detection kits, as well as detailing homebrew reagents that can be made in even modestly equipped labs.

Catching The View From The Edge Of Space

Does “Pix or it didn’t happen” apply to traveling to the edge of space on a balloon-lofted solar observatory? Yes, it absolutely does.

The breathtaking views on this page come courtesy of IRIS-2, a compact imaging package that creators [Ramón García], [Miguel Angel Gomez], [David Mayo], and [Aitor Conde] recently decided to release as open source hardware. It rode to the edge of space aboard Sunrise III, a balloon-borne solar observatory designed to study solar magnetic fields and atmospheric plasma flows.

Continue reading “Catching The View From The Edge Of Space”

Hackaday Links Column Banner

Hackaday Links: December 15, 2024

It looks like we won’t have Cruise to kick around in this space anymore with the news that General Motors is pulling the plug on its woe-beset robotaxi project. Cruise, which GM acquired in 2016, fielded autonomous vehicles in various test markets, but the fleet racked up enough high-profile mishaps (first item) for California regulators to shut down test programs in the state last year. The inevitable layoffs ensued, and GM is now killing off its efforts to build robotaxis to concentrate on incorporating the Cruise technology into its “Super Cruise” suite of driver-assistance features for its full line of cars and trucks. We feel like this might be a tacit admission that surmounting the problems of fully autonomous driving is just too hard a nut to crack profitably with current technology, since Super Cruise uses eye-tracking cameras to make sure the driver is paying attention to the road ahead when automation features are engaged. Basically, GM is admitting there still needs to be meat in the seat, at least for now.

Continue reading “Hackaday Links: December 15, 2024”

Wago Terminals Make This Ham Radio Dipole Light And Packable

For the amateur radio operator with that on-the-go lifestyle, nothing is more important than having your gear as light and packable as possible. If you’re lugging even a modest setup out into the woods, every ounce counts, which is why we love projects like this packable dipole antenna feedpoint.

At its simplest, a dipole antenna is just two pieces of wire cut to a specific, frequency-dependent length connected to a feedline. In practical terms, though, complications arise, such as keeping common-mode currents off the feedline and providing sturdy mechanical support for the antenna to suspend it safely. [Ham Radio Dude]’s design handles both those requirements while staying as small and packable as possible. The design starts with a bifilar 1:1 current balun, which is wound on an FT82-43 ferrite toroid with 22 AWG magnet wire. One side of the balun is connected to a BNC connector while the other is connected to a pair of Wago splice connectors that are glued together. A loop of paracord for mechanical strain relief is added, and the whole thing gets covered in heat-shrink tubing. The antenna is deployed by attaching a feedline to the BNC, clipping quarter-wave wires into the Wago terminals, and hoisting the whole thing aloft. Full build details are in the video below.

People will no doubt be quick to point out that these Wago terminals are rated for a minimum of 18 AWG wire, making them inappropriate for use with fine magnet wire. True enough, but [Dude] was able to get continuity through the Wagos, so the minimum gauge is probably more of an electrical code thing. Still, you’ll want to be careful that the connections stay solid, and it might pay to look at alternatives to the Wago brand, too. Continue reading “Wago Terminals Make This Ham Radio Dipole Light And Packable”

Automated Rig Grows Big, Beautiful Crystals Fast

We haven’t seen [Les Wright] in a while, and with the release of his new video, we know why — he’s been busy growing crystals.

Now, that might seem confusing to anyone who has done the classic “Crystal Garden” trick with table salt and laundry bluing, or tried to get a bit of rock candy out of a supersaturated sugar solution. Sure, growing crystals takes time, but it’s not exactly hard work. But [Les] isn’t in the market for any old crystals. Rather, he needs super-sized, optically clear crystals of potassium dihydrogen phosphate, or KDP, which are useful as frequency doublers for lasers. [Les] has detailed his need for KDP crystals before and even grown some nice ones, but he wanted to step up his game and grow some real whoppers.

And boy, did he ever. Fair warning; the video below is long and has a lot of detail on crystal-growing theory, but it’s well worth it for anyone taking the plunge. [Les] ended up building an automated crystal lab, housing it in an old server enclosure for temperature and dust control. The crystals are grown on a custom-built armature that slowly rotates in a supersaturated solution of KDP which is carefully transitioned through a specific temperature profile under Arduino control. As a bonus, he programmed the rig to take photographs of the growing crystals at intervals; the resulting time-lapse sequences are as gorgeous as the crystals, one of which grew to 40 grams in only a week.

We’re keen to see how [Les] puts these crystals to work, and to learn exactly what a “Pockels Cell” is and why you’d want one. In the meantime, if you’re interested in how the crystals that make the whole world work are made, check out our deep dive into silicon.

Continue reading “Automated Rig Grows Big, Beautiful Crystals Fast”

Good Lighting On A Budget With Cordless Tool Batteries

It’s perhaps not fair, but even if you have the best idea for a compelling video, few things will make people switch off than poor lighting. Good light and plenty of it is the order of the day when it comes to video production, and luckily there are many affordable options out there. Affordable, that is, right up to the point where you need batteries for remote shoots, in which case you’d better be ready to open the purse strings.

When [Dane Kouttron] ran into the battery problem with his video lighting setup, he fought back with these cheap and clever cordless tool battery pack adapters. His lights were designed to use Sony NP-F mount batteries, which are pretty common in the photography trade but unforgivably expensive, at least for Sony-branded packs. Having access to 20 volt DeWalt battery packs, he combined an off-the-shelf battery adapter with a 3D printed mount that slips right onto the light. Luckily, the lights have a built-in DC-DC converter that accepts up to 40 volts, so connecting the battery through a protection diode was a pretty simple exercise. The battery pack just slots right in and keeps the lights running for portable shoots.

Of course, if you don’t already have DeWalt batteries on hand, it might just be cheaper to buy the Sony batteries and be done with it. Then again, there are battery adapters for pretty much every cordless tool brand out there, so you should be able to adapt the design. We’ve also seen cross-brand battery adapters which might prove useful, too.