Eggs are perhaps the most beloved staple of breakfast. However, they come with a flaw, they are incredibly messy to work with. Cracking in particular leaves egg on one’s hands and countertop, requiring frequent hand washing. This fundamental flaw of eggs inspired [Stuff Made Here] to fix it with an over-engineered egg cracking robot.
Author: Fenix Guthrie27 Articles
Making The World’s Smallest E-Bike Battery
Often times, e-bikes seek to build the biggest battery with the most range. But what if you want to take a couple lunch loops on your bike and only need 20 minutes of charge? That’s [Seth] from Berm Peak set out to find out with his minuscule Bermacell battery.
The battery is made from only 14 18650s, this tiny 52V batty is nearly as small an e-bike battery as can be made. Each cell is 3000 mAh making a total battery capacity of 156 Wh. All the cells were welded in series with an off the shelf BMS and everything was neatly packaged in an over-sized 3D printed 9V battery case. [Seth] plans to make another smaller battery with less then 100 Wh of capacity so he can take it on a plane, so stay tuned for more coverage!
Continue reading “Making The World’s Smallest E-Bike Battery”
Sniffing 5G With Software-Defined Radio
The fifth generation mobile communications protocol (5G) is perhaps the most complicated wireless protocol ever made. Featuring wildly fast download speeds, beam forming base stations, and of course non-standard additions, it’s rather daunting prospect to analyze for the home hacker and researcher alike. But this didn’t stop the ASSET Research Group from developing a 5G sniffer and downlink injector.
The crux of the project is focused around real-time sniffing using one of two Universal Software Radio Peripheral (USRP) software-defined radios (SDRs), and a substantial quantity of compute power. This sniffed data can even be piped into Wireshark for filtering. The frequency is hard-coded into the sniffer for improved performance with the n78 and n41 bands having been tested as of writing. While we expect most of you don’t have the supported USRP hardware, they provided a sample capture file for anyone to analyze.
The other main feature of the project is an exploitation framework with numerous attack vectors developed by ASSET and others. By turning an SDR into a malicious 5G base station, numerous vulnerabilities and “features” can be exploited to with results ranging from downgrading the connection to 4G, fingerprinting and much more. It even includes an attack method we preciously covered called 5Ghull which can cause device failure requiring removal of the SIM Card. These vulnerabilities offer a unique look inside the inner workings of 5G.
If you too are interested in 5G sniffing but don’t have access to the hardware needed, check out this hack turning a Qualcomm phone into a 5G sniffer!
A Look Through The Eye Of A Bowling Ball
If you are anything like us, last time you went bowling, you thought more about how the ball came back to you than actually knocking down the pin. Perhaps you even wondered what it would be like to be a bowling ball making its way back through mysterious and hidden machines. [Wren] and [Erik Beck] did as well, so they set out to make a bowling ball camera to find out.
At the heart of the contraption is an Insta360 X5 camera nestled between water-jet cut metal plates. Because each lens of the camera has a 200 degree field of view, anything in the overlap of the two lenses simply does not appear, so the two metal plates likewise, do not appear. This does leave a somewhat noticeable seam down the middle of the footage, but overall worked out very well. To prevent vibrations in the bowling ball, it can only be rolled along the plate line, making said seam appear in all the footage. Because the stabilization is happening purely digitally, and the camera itself is spinning with the ball, motion blur became an issue immediately. Fortunately increasing the shutter speed fixed the issue, along with an increase in ISO to compensate for the decreased exposure.
You Wouldn’t Download A Skateboard?
At the end of the day, a skateboard boils down to a plank of wood with some wheels. They are wonderfully simple and fun and cheap modes of transportation. But this is Hackaday, so we are not here to talk about any normal skateboard, but one you can download and print. [megalog_’s] Skateboard MK2 is made almost entirely of 3D printed plastic, save some nuts and bolts.
The board’s four piece deck comes in at a modest 55cm length and features a rather stylish hexagonal pattern for grip. While you could presumably bring your own trucks, 3D printable ones are provided as well. The pieces bolt together to create a fairly strong deck with the option to make a rather stylish two tone print if you have the printer for it. Where the pieces meet is also the location of the truck mounting, further increasing the board’s strength. The weakest point is where the tail meets the main deck, which if pressed down to wheelie or ollie, the print breaks apart at the layer lines.
While you might be able to bring your own trucks, all be it with some modification to the deck, [megalog] also provided models for those as well. Not only were the bushings made of flexible TPE filament, but the outer wheel tire is too. It’s a little strange to see a wheel tire combo on a skateboard, when they are traditionally over moulded plastic with enough tire that you would be forgiven for thinking there is no wheel. While some reported using the more traditional threaded rod, the trucks used a metal rod with shaft collars to attach the wheels.
This is a neatly executed skateboard build with a well thought out design. Let us know in the comments if you will (or have) made one yourself! While you’re at it, maybe cast your own resin wheels for it!
Reverse Engineering LEGO Island
While LEGO themed video games have become something of a staple, in 1997 they were something of an odity. LEGO Island became the first LEGO video game released outside of Japan in 1997 and become something of a hit with over one million copies sold. The game was beloved among fans and set the stage for more LEGO video games to come. In an effort of love, [MattKC] put together a team to reverse engineer the game.
The team set out with the intent to create a near perfect recreation of the codebase, relying on custom made tools to run byte checks on the rewrite compilation and the original binary. While the project is functionally complete, [MattKC] believes it is impossible to get a byte accurate codebase. This is because of what the team called “compiler entropy.” Strange behaviors exists inside of Microsoft’s Visual C++ compiler of the era, and small changes in the code have seemingly random effects to unrelated parts of the binary. To mitigate this issue would likely require either partially reverse engineering Visual C++ or brute forcing the code, both of which would take a large amount of effort and time for no real benefit.
A Look Inside A Lemon Of A Race Car
Automotive racing is a grueling endeavor, a test of one’s mental and physical prowess to push an engineered masterpiece to its limit. This is all the more true of 24 hour endurance races where teams tag team to get the most laps of a circuit in over a 24 hour period. The format pushes cars and drivers to the very limit. Doing so on a $500 budget as presented by the 24 hours of Lemons makes this all the more impressive!
Of course, racing on a $500 budget is difficult to say the least. All the expected Fédération Internationale de l’Automobile (FIA) safety requirements are still in place, including roll cage, seats and fire extinguisher. However, brakes, wheels, tires and safety equipment are not factored into the cost of the car, which is good because an FIA racing seat can run well in excess of the budget. Despite the name, most races are twelve to sixteen hours across two days, but 24 hour endurance races are run. The very limiting budget and amateur nature of the event has created a large amount of room for teams to get creative with car restorations and race car builds.






