a Coleco Adams console on a desk

Coleco Adam: A Commodore 64 Competitor, Almost

For a brief, buzzing moment in 1983, the Coleco Adam looked like it might out-64 the Commodore 64. Announced with lots of ambition, this 8-bit marvel promised a complete computing package: a keyboard, digital storage, printer, and all for under $600. An important fact was that it could morph your ColecoVision into a full-fledged CP/M-compatible computer. So far this sounds like a hacker’s dream: modular, upgradeable, and… misunderstood.

The reality was glorious chaos. The Adam used a daisy-wheel printer as a power supply (yes, really), cassettes that demagnetized themselves, and a launch delayed into oblivion. Yet beneath the comedy of errors lurked something quite tempting: a Z80-based system with MSX-like architecture and just enough off-the-shelf parts to make clone fantasies plausible. Developers could have ported MSX software in weeks. Had Coleco shipped stable units on time, the Adam might well have eaten the C64’s lunch – while inspiring a new class of hybrid machines.

Instead, it became a collector’s oddball. But for the rest of us, it is a retro relic that invites us to ponder – or even start building: what if modular computing had gone mainstream in 1983?

Close-up view of the Solaria Ultra Grand Complication watch

Time, Stars, And Tides, All On Your Wrist

When asked ‘what makes you tick?’ the engineers at Vacheron Constantin sure know what to answer – and fast, too. Less than a year after last year’s horological kettlebell, the 960g Berkley Grand Complication, a new invention had to be worked out. And so, they delivered. Vacheron Constantin’s Solaria Ultra Grand Complication is more than just the world’s most complicated wristwatch. It’s a fine bit of precision engineering, packed with 41 complications, 13 pending patents, and a real-time star tracker the size of a 2-Euro coin.

Yes, there’s a Westminster chime and a tourbillon, but the real novelty is a dual-sapphire sky chart that lets you track constellations using a split-second chronograph. Start the chrono at dusk, aim your arrow at the stars, and it’ll tell you when a chosen star will appear overhead that night.

Built by a single watchmaker over eight years, the 36mm-wide movement houses 1,521 parts and 204 jewels. Despite the mad complexity, the watch stays wearable at just 45mm wide and 15mm thick, smaller than your average Seamaster. This is a wonder of analog computational mechanics. Just before you think of getting it gifted for Christmas, think twice – rumors are it’ll be quite pricey.

Illustrated scheme of Sam Ben Yaakovs concept

Leakage Control For Coupled Coils

Think of a circuit model that lets you move magnetic leakage around like sliders on a synth, without changing the external behavior of your coupled inductors. [Sam Ben-Yaakov] walks you through just that in his video ‘Versatile Coupled Inductor Circuit Model and Examples of Its Use’.

The core idea is as follows. Coupled inductors can be modeled in dozens of ways, but this one adds a twist: a tunable parameter 𝑥 between k and 1 (where k is the coupling coefficient). This fourth degree of freedom doesn’t change L, L or mutual inductance M (they remain invariant) but it lets you shuffle leakage where you want it, giving practical flexibility in designing or simulating transformers, converters, or filters with asymmetric behavior.

If you need leakage on one side only, set 𝑥=k. Prefer symmetrical split? Set 𝑥=1. It’s like parametric EQ, but magnetic. And: the maths holds up. As [Sam Ben-Yaakov] derives and confirms that for any 𝑥 in the range, external characteristics remain identical.

It’s especially useful when testing edge cases, or explaining inductive quirks that don’t behave quite like ideal transformers should. A good model to stash in your toolbox.

As we’ve seen previously, [Sam Ben-Yaakov] is at home when it comes to concepts that need tinkering, trial and error, and a dash of visuals to convey. Continue reading “Leakage Control For Coupled Coils”

ZX Mechtrum Deluxe keyboard close-up

The Keyboard Sinclair Never Made

For those of us who’ve spent far too long hammering rubber keys into submission, a glorious solution has arrived. [Lee Smith] designed the ZX Mechtrum Deluxe, the ultimate keyboard upgrade for your beloved ZX Spectrum 48k. Thanks to [morefunmakingit], you can see this build-it-yourself mechanical mod below. It finally brings a proper spacebar and Spectrum-themed Wraith keycaps into your retro life.

The Metrum Deluxe is a full PCB redesign: no reused matrices or clunky membrane adapters here. [Lee Smith] got fed up with people (read: the community, plus one very persistent YouTuber) asking for a better typing experience, so he delivered. Wraith keycaps from AliExpress echo the original token commands and BASIC vibe, without going full collector-crazy. Best of all: the files are open. You can download the case on Printables and order the PCB through JLCPCB. Cherry on top (pun intended): you’ll finally have a spacebar your thumbs can be proud of.

So whether you’re into Frankenstein rigs or just want your Spectrum to stop feeling like an air mattress, check this video out. Build files and link to the keycaps can be found on Youtube, below the video.

Tip: if you foster a secret love for keyboards, don’t miss the Keebin’ with Kristina’s series on all sorts of keyboards.

Continue reading “The Keyboard Sinclair Never Made”

Render of a simple clockwork orrery

Planetary Poetry With A Tiny Digital Core

Some hacks just tickle the brain in a very particular way. They’re, for a change, not overly engineered; they’re just elegant, anachronistic, and full of mischief. That’s exactly what [Frans] pulls off with A Gentleman’s Orrery, a tiny, simple clockwork solar system. Composed of shiny brass and the poise of 18th-century craftsmanship, it hides a modern secret: there’s barely any clockwork inside. You can build it yourself.

Mechanism of a simple clockwork orreryPeek behind the polished face and you’ll find a mechanical sleight of hand. This isn’t your grandfather’s gear-laden planetarium. Instead of that, it operates on a pared-down system that relies on a stepper motor, driving planetary movement through a 0.8 mm axle nested inside a 1 mm brass tube. That micro-mechanical coupling, aided by a couple of bevel gears, manages to rotate the Moon just right, including its orientation. Most of the movement relies on clever design, not gear cascades. The real wizardry happens under the hood: a 3D-printed chassis cradles an ESP32-C6, a TTP223 capacitive touch module, STSPIN220 driver, and even a reed switch with magnetic charging.

You can even swap out the brass for a stone shell where the full moon acts as the touch control. It’s tactile, it’s poetic, and therefore, a nice hack for a weekend project. To build it yourself, read [Frans]’ Instructable.

Continue reading “Planetary Poetry With A Tiny Digital Core”

Rusty bathtub outdoors on equally rusty car springs

Hot Rod Backyard Bath On Steel Spring Legs

In a fusion of scrapyard elegance and Aussie ingenuity, [Mark Makies] has given a piece of old steel a steamy second life with his ‘CastAway Tub’. Call it a bush mechanic’s fever dream turned functional sculpture, starring two vintage LandCruiser leaf springs, and a rust-hugged cast iron tub dug up after 20 years in hiding. And put your welding goggles on, because this one is equal parts brute force and artisan flair.

What makes this hack so bold is, first of all, the reuse of unforgiving spring steel. Leaf springs, notoriously temperamental to weld, are tamed here with oxy-LPG preheating, avoiding thermal shock like a pro. The tub sits proudly atop a custom-welded frame shaped from dismantled spring packs, with each leaf ground, clamped, torched, and welded into a steampunk sled base. The whole thing looks like it might outrun a dune buggy – and possibly bathe you while it’s at it. It’s a masterclass in metalwork with zero CAD, all intuition, and a grinder that’s seen things.

Inspired? For those with a secret love for hot water and hot steel, this build is a blueprint for turning bush junk into backyard art. Read up on the full build at Instructables.

Mark Setrakian and Adam Savage investigate a massive prop hand

17 Year Old Hellboy II Prop Still Amazes

The AI effects we know these days were once preceded by CGI, and those were once preceded by true hand-built physical props. If that makes you think of Muppets, this video will change your mind. In a behind-the-scenes look with [Adam Savage], effects designer [Mark Setrakian] reveals the full animatronic glory of Mr. Wink’s mechanical fist from Hellboy II: The Golden Army (2008) – and this beast still flexes.

Most of this arm was actually made in 2003, when 3D printing was very different than what we think of today. Printed on a Stratasys Titan – think: large refrigerator-sized machine, expensive as sin – the parts were then hand-textured with a Dremel for that war-scarred, brutalist feel. This wasn’t just basic animatronics for set dressing. This was a fully actuated prop with servo-driven finger joints, a retractable chain weapon, and bevel-geared mechanisms that scream mechanical craftsmanship.

Each finger is individually designed. The chain reel: powered by a DeWalt drill motor and custom bevel gear assembly. Every department: sculptors, CAD modelers, machinists, contributed to this hybrid of analog and digital magic. Props like this are becoming unicorns.

Continue reading “17 Year Old Hellboy II Prop Still Amazes”