Schematic of a circuit

Hacking Flux Paths: The Surprising Magnetic Bypass

If you think shorting a transformer’s winding means big sparks and fried wires: think again. In this educational video, titled The Magnetic Bypass, [Sam Ben-Yaakov] flips this assumption. By cleverly tweaking a reluctance-based magnetic circuit, this hack channels flux in a way that breaks the usual rules. Using a simple free leg and a switched winding, the setup ensures that shorting the output doesn’t spike the current. For anyone who is obsessed with magnetic circuits or who just loves unexpected engineering quirks, this one is worth a closer look.

So, what’s going on under the hood? The trick lies in flux redistribution. In a typical transformer, shorting an auxiliary winding invites a surge of current. Here, most of the flux detours through a lower-reluctance path: the magnetic bypass. This reduces flux in the auxiliary leg, leaving voltage and current surprisingly low. [Sam]’s simulations in LTspice back it up: 10 V in yields a modest 6 mV out when shorted. It’s like telling flux where to go, but without complex electronics. It is a potential stepping stone for safer high-voltage applications, thanks to its inherent current-limiting nature.

The original video walks through the theory, circuit equivalences, and LTspice tests. Enjoy!

Continue reading “Hacking Flux Paths: The Surprising Magnetic Bypass”

Close up of a custom optical HDMI cable on a desk

Let There Be Light: The Engineering Of Optical HDMI

In a recent video, [Shahriar] from The Signal Path has unveiled the intricate design and architecture of optical HDMI cables, offering a cost-effective solution to extend HDMI 2.0 connections beyond the limitations of traditional copper links. This exploration is particularly captivating for those passionate about innovative hardware hacks and signal transmission technologies.

[Shahriar] begins by dissecting the fundamentals of HDMI high-speed data transmission, focusing on the Transition Minimized Differential Signaling (TMDS) standard. He then transitions to the challenges of converting from twisted-pair copper to optical lanes, emphasizing the pivotal roles of Vertical-Cavity Surface-Emitting Lasers (VCSELs) and PIN photodiodes. These components are essential for transforming electrical signals into optical ones and vice versa, enabling data transmission over greater distances without significant signal degradation.

A standout aspect of this teardown is the detailed examination of the optical modules, highlighting the use of free-space optics and optical confinement techniques with lasers and detectors. [Shahriar] captures the eye diagram of the received high-speed lane and confirms the VCSELs’ optical wavelength at 850 nm. Additionally, he provides a microscopic inspection of the TX and RX chips, revealing the intricate VCSEL and photodetector arrays. His thorough analysis offers invaluable insights into the electronic architecture of optical HDMI cables, shedding light on the complexities of signal integrity and the innovative solutions employed to overcome them.

For enthusiasts eager to take a deeper look into the nuances of optical HDMI technology, [Shahriar]’s comprehensive teardown serves as an excellent resource. It not only gives an insight in the components and design choices involved, but also inspires further exploration into enhancing data transmission methods.

Continue reading “Let There Be Light: The Engineering Of Optical HDMI”

Graphene Tattoos: The Future Of Continuous Health Monitoring?

In the near future, imagine a world where your health is continuously monitored, not through bulky devices but through an invisible graphene tattoo. Developed at the University of Massachusetts Amherst, these tattoos could soon detect a range of health metrics, including blood pressure, stress levels, and even biomarkers of diseases like diabetes. This technology, though still in its infancy, promises to revolutionize how we monitor health, making it possible to track our bodies’ responses to everything from exercise to environmental exposure in real-time.

Graphene, a single layer of carbon atoms, is key to the development of these tattoos. They are flexible, transparent, and conductive, making them ideal for bioelectronics. The tattoos are so thin and pliable that users won’t even feel them on their skin. In early tests, graphene electronic tattoos (GETs) have been used to measure bioimpedance, which correlates with blood pressure and other vital signs. The real breakthrough here, however, is the continuous, non-invasive monitoring that could enable early detection of conditions that usually go unnoticed until it’s too late.

While still requiring refinement, this technology is advancing rapidly. Graphene still amazes us, but it’s no longer just science fiction. Soon, these tattoos could be a part of everyday life, helping individuals track their health and enabling better preventative care. Since we’re hackers out here –  but this is a far fetch – combining this knowledge on graphene production, and this article on tattooing with a 3D printer, could get you on track. Let us know, what would you use graphene biosensors for?

Continue reading “Graphene Tattoos: The Future Of Continuous Health Monitoring?”

Man using a table saw with a VR headset on

Chop, Chop, Chop: Trying Out VR For Woodworking

Virtual Reality in woodworking sounds like a recipe for disaster—or at least a few missing fingers. But [The Swedish Maker] decided to put this concept to the test, diving into a full woodworking project while wearing a Meta Quest 3. You can check out the full experiment here, but let’s break down the highs, lows, and slightly terrifying moments of this unconventional build.

The plan: complete a full furniture build while using the VR headset for everything—from sketching ideas to cutting plywood. The Meta Quest 3’s passthrough mode provided a semi-transparent AR view, allowing [The Swedish Maker] to see real-world tools while overlaying digital plans. Sounds futuristic, right? Well, the reality was more like a VR fever dream. Depth perception was off, measuring was a struggle, and working through a screen-delayed headset was nauseating at best. Yet, despite the warped visuals, the experiment uncovered some surprising advantages—like the ability to overlay PDFs in real-time without constantly running back to a computer.

So is VR useful to the future of woodworking? If you’re a woodworking novice, you might steer clear from VR and read up on the basics first. For the more seasoned: maybe, when headsets evolve beyond their current limitations. For now, it’s a hilarious, slightly terrifying experiment that might just inspire the next wave of augmented reality workshops. If you’re more into electronics, we did cover the possibilities with AR some time ago. We’re curious to know your thoughts on this development in the comments!

Continue reading “Chop, Chop, Chop: Trying Out VR For Woodworking”

Will Embodied AI Make Prosthetics More Humane?

Building a robotic arm and hand that matches human dexterity is tougher than it looks. We can create aesthetically pleasing ones, very functional ones, but the perfect mix of both? Still a work in progress. Just ask [Sarah de Lagarde], who in 2022 literally lost an arm and a leg in a life-changing accident. In this BBC interview, she shares her experiences openly – highlighting both the promise and the limits of today’s prosthetics.

The problem is that our hands aren’t just grabby bits. They’re intricate systems of nerves, tendons, and ridiculously precise motor control. Even the best AI-powered prosthetics rely on crude muscle signals, while dexterous robots struggle with the simplest things — like tying shoelaces or flipping a pancake without launching it into orbit.

That doesn’t mean progress isn’t happening. Researchers are training robotic fingers with real-world data, moving from ‘oops’ to actual precision. Embodied AI, i.e. machines that learn by physically interacting with their environment, is bridging the gap. Soft robotics with AI-driven feedback loops mimic how our fingers instinctively adjust grip pressure. If haptics are your point of interest, we have posted about it before.

The future isn’t just robots copying our movements, it’s about them understanding touch. Instead of machine learning, we might want to shift focus to human learning. If AI cracks that, we’re one step closer.

 

Screenshot of Linux in a PDF in a browser

Nice PDF, But Can It Run Linux? Yikes!

The days that PDFs were the granny-proof Swiss Army knives of document sharing are definitely over, according to [vk6]. He has managed to pull off the ultimate mind-bender: running Linux inside a PDF file. Yep, you read that right. A full Linux distro chugging along in a virtual machine all encapsulated within a document. Just when you thought running DOOM was the epitome of it. You can even try it out in your own browser, right here. Mind-boggling, or downright Pandora’s box?

Let’s unpack how this black magic works. The humble PDF file format supports JavaScript – with a limited standard library, mind you. By leveraging this, [vk6] managed to compile a RISC-V emulator (TinyEMU) into JavaScript using an old version of Emscripten targeting asm.js instead of WebAssembly. The emulator, embedded within the PDF, interfaces with virtual input through a keyboard and text box.

The graphical output is ingeniously rendered as ASCII characters – each line displayed in a separate text field. It’s a wild solution but works astonishingly well for something so unconventional.

Security-wise, this definitely raises eyebrows. PDFs have long been vectors for malware, but this pushes things further: PDFs with computational power. We know not to trust Word documents, whether they just capable of running Doom, or trash your entire system in a blink. This PDF anomaly unfolds a complete, powerful operating system in front of your very eyes. Should we think lightly, and hope it’ll lead to smarter, more interactive PDFs – or will it bring us innocent looking files weaponized for chaos?

Curious minds, go take a look for yourself. The project’s code is available on GitHub.

Continue reading “Nice PDF, But Can It Run Linux? Yikes!”

Jeff Dunham next to a Philco Predicta TV

Jeff Dunham Finds A NOS 1958 Philco Predicta

When you see a ventriloquist like [Jeff Dunham], you probably expect to see him with a puppet. This time – spoilers ahead – you won’t. Besides his fame on stage, [Dunham] is also a collector of vintage tech and a die-hard television enthusiast. In the video below, [Dunham] has gotten his hands on a rarity: an unboxed 1958 Philco Predicta TV. The original tape was still on the box. We get to follow along on his adventure to restore this sleek, retro-futuristic relic!

[Dunham]’s fascination with the Predicta stems from its historical significance and bold design. At a time when television was making its way into American homes, the Predicta dared to be different with its swivel-mounted picture tube and early printed circuit boards. Despite its brave aesthetics, the Predicta’s ambition led to notorious reliability issues. Yet, finding one in pristine condition, sealed and untouched for over six decades, is like unearthing a technological time capsule.

What makes this story unique is [Dunham]’s connection to both broadcasting and his craft. As a ventriloquist inspired by Edgar Bergen — whose radio shows captivated America — [Dunham] delights in restoring a TV from the same brand that first brought his idol’s voice to airwaves. His love for storytelling seamlessly translates into this restoration adventure.

After unboxing, [Dunham’s] team faces several challenges: navigating fragile components, securing the original shipping brace, and cautiously ramping up voltage to breathe life into the Predicta. The suspense peaks in the satisfying crackle of static, and the flicker of a 65-year-old screen finally awakened from slumber.

Have you ever come across an opportunity like this? Tell us about your favorite new old stock find in the comments. Buying these can be a risk, since components have a shelf life. We appreciate when these old TVs play period-appropriate shows. Who wants to watch Game of Thrones on a Predicta?

Continue reading “Jeff Dunham Finds A NOS 1958 Philco Predicta”