Close up of a multi-USB tester PCB

Troubled USB Device? This Tool Can Help

You know how it goes — some gadgets stick around in your toolbox far longer than reason dictates, because maybe one day you’ll need it. How many of us held onto ISA diagnostic cards long past the death of the interface?

But unlike ISA, USB isn’t going away anytime soon. Which is exactly why this USB and more tester by [Iron Fuse] deserves a spot in your toolbox. This post is not meant to directly lure you into buying something, but seen how compact it is, it would be sad to challenge anyone to reinvent this ‘wheel’, instead of just ordering it.

So, to get into the details. This is far from the first USB tester to appear on these pages, but it is one of the most versatile ones we’ve seen so far. On the surface, it looks simple: a hand-soldered 14×17 cm PCB with twelve different connectors, all broken out to labelled test points. Hook up a dodgy cable or device, connect a known-good counterpart, and the board makes it painless to probe continuity, resistance, or those pesky shorts where D+ suddenly thinks it’s a ground line.

You’ll still need your multimeter (automation is promised for a future revision), but the convenience of not juggling probes into microscopic USB-C cavities is hard to overstate. Also, if finding out whether you have a power-only or a data cable is your goal, this might be the tool for you instead.

Digital prototype of Zeusfilter 1.0

How To Stop Zeus From Toasting Your Pi

If you’ve ever lost gear to lightning or power spikes, you know what a pain they are. Out in rural Arkansas, where [vinthewrench] lives, the grid is more chaos than comfort – especially when storms hit. So, he dug into the problem after watching a cheap AC-DC module quite literally melt down. The full story, as always, begins with the power company’s helpful reclosers: lightning-induced surges, and grid switching transients. The result though: toasted boards, shorted transformers, and one very dead Raspberry Pi. [vinthewrench] wrote it all up – with decent warnings ahead. Take heed and don’t venture into things that could put your life in danger.

Back to the story. Standard surge suppressors? Forget it. Metal-oxide varistor (MOV)-based strips are fine for office laptops, but rural storms laugh at their 600 J limits. While effective and commonly used, MOVs are “self-sacrificing” and degrade over time with each surge event.

[vinthewrench] wanted something sturdier. Enter ZeusFilter 1.0 – a line-voltage filter stitched together from real parts: a slow-blow fuse, inrush-limiting thermistor, three-electrode gas discharge tube for lightning-class hits, beefy MOVs for mid-sized spikes, common-mode choke to kill EMI chatter, and safety caps to bleed off what’s left. Grounding done right, of course. The whole thing lives on a single-layer PCB, destined to sit upstream of a hardened PSU.

As one of his readers pointed out, though, spikes don’t always stop at the input. Sudden cut-offs on the primary can still throw nasty pulses into the secondary, especially with bargain-bin transformers and ‘mystery’ regulators. The reader reminded that counterfeit 7805s are infamous for failing short, dumping raw input into a supposedly safe 5 V rail. [vinthewrench] acknowledged this too, recalling how collapsing fields don’t just vanish politely – Lenz makes sure they kick back hard. And yes, when cheap silicon fails, it fails ugly: straight smoke-release mode.

In conclusion, we’re not particularly asking you to try this at home if you lack the proper knowledge. But if you have a high-voltage addiction, this home research is a good start to expand your knowledge of what is, in theory, possible.

Close up of a DIY minimalist EDC multitool, a penny, and a paperclip

This Pocket Multitool Weighs Less Than A Penny

A multitool that weighs less than a penny? Yes, it exists. This video by [ToolTechGeek] shows his titanium flat-cut design tipping the scales at only 1.9 grams—lighter than the 2.5-gram copper penny jingling in your pocket. His reasoning: where most everyday carry (EDC) tools are bulky, overpriced, or simply too much, this hack flips the equation: reduce it to the absolute minimum, yet keep it useful.

You might have seen this before. This second attempt is done by laser-cutting titanium instead of stainless steel. Thinner, tougher, and rust-proof, titanium slashes the weight dramatically, while still keeping edges functional without sharpening. Despite the size, this tool manages to pack in a Phillips and flathead screwdriver, a makeshift saw, a paint-lid opener, a wire bender (yes, tested on a paperclip), and even a 1/4″ wrench doubling as a bit driver. High-torque screwdriving by using the long edges is a clever exploit, and yes—it scrapes wood, snaps zip ties, and even forces a bottle cap open, albeit a bit roughly.

It’s not about replacing your Leatherman; it’s about carrying something instead of nothing. Ultra-minimalist, featherlight, pocket-slip friendly—bet you can’t find a reason not to just have it in your pocket.

Continue reading “This Pocket Multitool Weighs Less Than A Penny”

Meccano model of a Brennan's monorail

A Second Chance For The Single Wheel Monorail?

Lately, this peculiar little single wheel monorail came to our attention. Built by [extraglide1976], all from Meccano. His build started with modest tests: one gyro obviously flopped. Two gyros geared together ran slightly better. But when he adds active gimbal control, things suddenly come to life – the model shudders, catches itself, and carries on. The final green-roofed locomotive, with LEDs signalling ‘system go’, trundles smoothly along a single rail on [extraglide1976]’s deck.

To be fair, it houses a lot of mechanics and engineering which we don’t find in the monorails of today. We do have quite a few monorails in our world, but none of them balance on a single wheel like this one. So, where did this invention derail?

Outside of theme parks, Japan is one of the few countries where monorails are still used as serious urban transport: though Germany’s century-old Wuppertal Schwebebahn, the lesser-known C-Bahn, China’s sprawling Chongqing and Shanghai systems, Malaysia’s Kuala Lumpur line, Brazil’s São Paulo network, the US links in Seattle and Las Vegas, and India’s Mumbai Monorail prove the idea has quietly taken root elsewhere.

The thing you’ll see in nearly all these monorails is how the carriages are designed to clamp onto the tracks. This is of course the most safe option, but it loses out on speed to the ones that sit on top of the tracks, balancing on one wheel. Such a train was actually invented, in 1910, by Louis Brennan. His original monorail promised faster, cheaper transport, even using existing rails. The carriages leaned into turns like a motorbike, without any intervention from the driver. Two counter-rotating gyroscopes kept the carriage upright, cancelling precession forces like a mechanical Jedi trick.

Back then, it failed commercially, but today? With cheap sensors, brushless motors, and microcontrollers, and intelligent software, why  not let it make a comeback? It could carry freight through narrow urban tunnels. With high-speed single-rail pods?

Investors killed Brennan’s idea, but we live in a different time now. You could start out with a gimmicky ‘snacks and beer’ highline from your fridge to your garage. Share your take on it in the comments!

Continue reading “A Second Chance For The Single Wheel Monorail?”

[Ben] at workbench with 3D-printed sea scooter

Watertight And Wireless In One Go: The DIY Sea Scooter

To every gadget, tool, or toy, you can reasonably think: ‘Sure I could buy this… but can I make it myself?’ And that’s where [Ben] decided he could, and got to work. On a sea scooter, to be exact.

This sea scooter was to be a fully waterproof, hermetically sealed 3D-printed underwater personal propulsion device, with the extreme constraint that the entire hull and mechanical interfaces are printed in one go. No post-printing holes for shafts, connectors, or seals. It also meant [Ben] needed to embed all electronics, motor, magnetic gearbox, custom battery pack, wireless charging, and non-contact magnetic control system inside the print during the actual print process.

As [Ben] explains, both Bluetooth and WiFi ranges are laughable once underwater. He elegantly solves this with a reed-switch-based magnetic control system. The non-contact magnetic drive avoids shaft penetrations entirely. Power comes from a custom 8S LiFePO₄ pack, charged wirelessly through the hull. Lastly, everything’s wrapped in epoxy to make it as watertight as a real submarine.

The whole trick of ‘print-in-place’ is that [Ben] pauses the builder mid-print, and drops in each subsystem like a secret ingredient. Continuing, he tweaks the printer’s Z-offset, and onwards it goes. It’s tense, high-stakes work; a 14-hour print where one nozzle crash means binning hundreds of dollars’ worth of embedded components.

Still, [Ben] took the chance, and delivered a cool, fully packed and fully working sea scooter. Comment below to discuss the possibilities of building one yourself.

Continue reading “Watertight And Wireless In One Go: The DIY Sea Scooter”

Screenshot of audio noise graph

Whispers From The Void, Transcribed With AI

‘Hearing voices’ doesn’t have to be worrisome, for instance when software-defined radio (SDR) happens to be your hobby. It can take quite some of your time and attention to pull voices from the ether and decode them. Therefore, [theckid] came up with a nifty solution: RadioTranscriptor. It’s a homebrew Python script that captures SDR audio and transcribes it using OpenAI’s Whisper model, running on your GPU if available. It’s lean and geeky, and helps you hear ‘the voice in the noise’ without actively listening to it yourself.

This tool goes beyond the basic listening and recording. RadioTranscriptor combines SDR, voice activity detection (VAD), and deep learning. It resamples 48kHz audio to 16kHz in real time. It keeps a rolling buffer, and only transcribes actual voice detected from the air. It continuously writes to a daily log, so you can comb through yesterday’s signal hauntings while new findings are being logged. It offers GPU support with CUDA, with fallback to CPU.

It sure has its quirks, too: ghost logs, duplicate words – but it’s dead useful and hackable to your liking. Want to change the model, tweak the threshold, add speaker detection: the code is here to fork and extend. And why not go the extra mile, and turn it into art?

Raspberry Pi Pico LED display sitting in window sill

An Ode To The Aesthetic Of Light In 1024 Pixels

Sometimes, brilliant perspectives need a bit of an introduction first, and this is clearly one. This video essay by [Cleggy] delivers what it promises: an ode to the aesthetic of light. But he goes further, materializing his way of viewing things into a beautiful physical build — and the full explanation of how to do it at home.

What’s outstanding here is not just the visual result, but the path to it. We’ve covered tons of different LED matrices, and while they’re all functional, their eventual purpose is left up to the builder, like coasters or earknobs. [Cleggy] provides both. He captured a vision in the streets and then built an LED matrix from scratch.

The matrix consists of 1024 hand-soldered diodes. They’re driven by a Raspberry Pi Pico and a symphony of square waves. It’s not exactly a WS2812 plug-and-play job. It’s engineered from the silicon up, with D-latches and demultiplexers orchestrating a mesmerizing grayscale visual.

Pulse-width modulation (PWM) is the secret ingredient of this hack. [Cleggy] dims each white pixel separately, by varying the duty cycle of its light signal. The grayscale video data, compressed into CSV files, is parsed line-by-line by the Pico, translating intensity values into shimmering time slices.

It transforms the way you see and perceive things. All that, with a 1000 LED monochrome display. Light shows are all highly personal, and each one is a little different. Some of them are really kid stuff.

Continue reading “An Ode To The Aesthetic Of Light In 1024 Pixels”