Apple 1 Emulator Is A Perfect Fit For Supercon Badge

Supercon badge hackers had to be ready to present their show-and-tell by 6 pm Sunday evening. This ruthless unmoving deadline meant every badge hack on stage represents an accomplishment in time management, and some luck, in addition to their own technical merits. But that deadline also meant a few fantastic projects lost their race against the clock. We were rooting for [Jac Goudsmit] to build an Apple I emulator as his badge expansion, but he wasn’t quite done when our badge hack ceremony began. After Supercon he went home, finished the project, and documented everything in a detailed writeup.

Our 2018 Supercon badge is built on a retro-computing theme, and the default firmware came with a BASIC interpreter as well as a Z80 emulator running CP/M. So an Apple 1 emulator should feel right home with its contemporaries. Mechanically speaking, all the parts were a tight fit on the badge expansion board given out to every attendee at Supercon. So tightly that [Jac] had to file down the two main chips in order to fit them side by side. The breadboard-like pattern of connected holes on the expansion board, intended to help ease in beginners for their badge hack soldering, proved to be an inconvenience in tightly packed arrangements such as this.

With all the work [Jac] had invested, it was heartbreaking to know he was only five minutes of soldering and 30 minutes of coding away when time ran out. Time pressure was part of the challenge faced by every Supercon badge hacker, and while we’re sad [Jac] missed the deadline for stage time we’re happy to see him finish and write it all up. We hope every badge hacker would write up their stories of frantic weekend projects. Those who do so on hackaday.io are encouraged to tag their project with “Supercon” and get them added to our list of badge hacks for everyone to admire.

Supercon Badge Hackers Racing The Clock

At the end of Hackaday Superconference weekend, we hold a badge hacking ceremony on the main stage where anyone who has done anything with their badge is invited to come on stage and show off their work. Yes, even if it’s just a blinking LED! It was a tremendous pleasure to see not only people taking us at our word and presented blinking LEDs, but that the community in the room welcomed these inductees to hardware hacking with cheers. Before the ceremony, though, there was a lot of frantic work by badge hackers armed with soldering irons and fueled by caffeine. It’s always amazing how much people can accomplish in a single focused weekend.

Continue reading “Supercon Badge Hackers Racing The Clock”

Green LED Means GO For Supercon Badge Hacking

In addition to great speakers and enlightening workshops at Supercon, we have an area set aside for attendees to hack on their conference badges. There is no prerequisite beyond having a badge and a willingness to get hands-on. From hardware beginners to professional embedded system developers, we welcome all skill levels!

The image above is a free-form LED light sculpture by [4C1dBurn], who had just learned to solder and this is how a new skill was put into practice. In the background is the badge hacking arena: 7 tables set up in a row with 6 seats per table. The doors opened at 9AM and almost all the seats were filled by 9:30AM. There’s a constant flow as people leave to attend a talk or workshop, and others arrive to fill the vacancy.

In our hardware hacking overview, we shared an example of an LED array controlled by badge using shift registers. Several badge hackers built on top of this idea. [X] is making a version for surface mount LEDs, and [macegr]’s variant incorporated an USB-to-serial adapter on board to reduce wire clutter. He calls it a “quality of life improvement” and we think it’s brilliant.

Any reduction in wire clutter can only help with the many glorious explosions of wires scattered about. This particular example is a work-in-progress by [carfucar] turning a badge into wireless remote for a large array of WS2812B LED strips.

Heeding our call to action in the hardware hacking overview, there are at least two efforts underway to add wireless communication capability to the badge. [Preston] is making good progress teaching a badge to talk to an AVR-IoT module. [morgan] and [Ben] are building a mesh network using ESP32s. If it gets up and running, they’ve brought a bunch of ESP32s to add more nodes to their network.

For the talks currently on stage, go to the Supercon event page and click “Livestream” in the upper right corner for the official live stream. Badge hacking will continue all through Supercon, parts of which will be visible through unofficial livestream of badge hacking from attendees like [X]’s robot [Sharon].

SMORES Robot Finds Its Own Way To The Campfire

Robots that can dynamically reconfigure themselves to adapt to their environments offer a promising advantage over their less dynamic cousins. Researchers have been working through all the challenges of realizing that potential: hardware, software, and all the interactions in between. On the software end of the spectrum, a team at University of Pennsylvania’s ModLab has been working on a robot that can autonomously choose a configuration to best fit its task at hand.

We’ve recently done an overview of modular robots, and we noted that coordination and control are persistent challenges in this area. The robot in this particular demonstration is a hybrid: a fixed core module serving as central command, plus six of the lab’s dynamic SMORES-EP modules. The core module has a RGB+Depth camera for awareness of its environment. A separate downwards-looking camera watches SMORES modules for awareness of itself.

Combining that data using a mix of open robot research software and new machine specific code, this team’s creation autonomously navigates an unfamiliar test environment. While it can adapt to specific terrain challenges like a wood staircase, there are still limitations on situations it can handle. Kudos to the researchers for honestly showing and explaining how the robot can get stuck on a ground seam, instead of editing that gaffe out to cover it up.

While this robot isn’t the completely decentralized modular robot system some are aiming for, it would be a mistake to dismiss based on that criticism alone. At the very least, it is an instructive step on the journey offering a tradeoff that’s useful on its own merits. And perhaps this hybrid approach will find application with a modular robot close to our hearts: Dtto, the winner of our 2016 Hackaday Prize.

[via Science News]

Continue reading “SMORES Robot Finds Its Own Way To The Campfire”

Vinduino Water-Smart Farming – Now With LoRa!

Our five rounds of Hackaday Prize 2018 challenges have just wrapped up, and we’re looking forward to see where the chips fall in the final ranking. While we’re waiting for the winners to be announced at Hackaday Superconference, it’s fun to take a look back at one of our past winners. Watch [Reinier van der Lee] give the latest updates on his Vinduino project (video also embedded after the break) to a Hackaday Los Angeles meetup earlier this year.

Vinduino started with [Reinier]’s desire to better understand what happens to irrigation water under the surface, measuring soil moisture at different depths. This knowledge informs more efficient use of irrigation water, as we’ve previously covered in more detail. What [Reinier] has been focused on is improving usability of the system by networking the sensors wirelessly versus having to walk up and physically attach a reader unit.

His thought started the same as ours – put them on WiFi! But adding WiFi coverage across his entire vineyard was not going to be cost-effective. After experimenting with various communication schemes, he has settled on LoRa. Designed to trade raw bandwidth for long range with low power requirements, it is a perfect match for a network of soil moisture sensors.

In the video [Reinier] gives an overview of LoRa for those who might be unfamiliar. Followed by results of his experiments integrating LoRa functionality into Vinduino, and ending with a call to action for hackers to help grow the LoRa network. It sounds like he’s become quite the champion for the cause! He’s even giving a hands-on workshop at Supercon where you can build your own LoRa connected sensor. (Get tickets here.)

We’re always happy to see open-source hardware projects like Vinduino succeed, transitioning to a product that solve real world problems. We know there are even more promising ideas out there, which is why Hackaday’s sister company Tindie is funding a Project to Product program to help this year’s winners follow in Vinduino’s footsteps. We look forward to sharing more success stories yet to come.

Continue reading “Vinduino Water-Smart Farming – Now With LoRa!”

Supercon Badge Hardware Hacking: Here’s What To Bring

Hackaday Superconference is just a week away (precious few tickets remain), a celebration of all things Hackaday, which naturally includes creative projects making the most of their hardware. Every attendee gets a platform for hacking in the form of the conference badge.

To make the most of your badge hacking fun, plan ahead so you will have the extra components and the tools you need. At the most basic, bring along a serial to USB cable and a PIC programmer. These are common and if you don’t own them, ask around and you will likely be able to borrow them. Now is also the time to put in a parts order for any components you want to use but don’t have on hand!

The badge is hackable without any extras, but it’s designed for adding hardware and hacking the firmware. We’re excited to see what you can do with it. We gave an overview of this retro themed pocket computer a few days ago, today we’re inviting you to exploit its potential for your hardware hacks.

Continue reading “Supercon Badge Hardware Hacking: Here’s What To Bring”

Solar Power For Chernobyl’s Second Generation Of Electricity

When featuring cool hacks repurposing one thing for something else, we prefer to focus on what we could get our hands on and replicate for ourselves. Not this one, though, as nobody else has the misfortune of being responsible for 2,000 square kilometers (772 square miles) of radioactive contaminated land like the government of Ukraine. Trying to make the best of what they have, they’ve just launched a pilot program working to put up solar power farms inside the Chernobyl Exclusion Zone.

This is sure to invite some jokes in the comments section, but the idea has merit. Thirty years of weather has eroded the worst aftermath of the Chernobyl explosion. That area is no longer immediately lethal and people have been making short visits. Spanning from safety inspectors, to scientists, to curious adventurers with questionable judgement making television shows. Supposedly, by following rules on what not to do, it’s possible to keep radiation exposure of a short visit down to the level experienced by frequent fliers. But that’s still too much radiation for long-term stay. That means no homes, office parks, or factories. No agriculture either, as plants and animals grown in the area should not be eaten.

So what’s left? That’s what Ukraine has been struggling with, as it tried to figure out something positive to offset the headaches of monitoring the area.

Well, next to the defunct power plant is the electric distribution infrastructure it used to feed into, and photovoltaic power generation requires little human oversight. Some maintenance will be required, but hopefully someone has worked out how to keep maintenance workers’ cumulative exposure to a minimum. And if this idea pans out, clean renewable energy would start flowing from the site of one of the worst ecological disasters of our era. That makes it a worthwhile hack on a grand scale.

[via Gizmodo]