Prepping For Power Outages

When the mains power goes, we are abruptly brought face-to-face with how many of the devices and services we take for granted rely upon it. Telephones for instance, where once they were attached to the wall by a cable, now they are a cordless device with a mains-powered base station. Your cellphone can fill that gap, but a modern smartphone with a battery life of under a day is hardly a reliable long-term solution. Meanwhile modern heating systems may still burn gas or fuel oil, but rely on an electric pump for circulation. Your kitchen is full of electrically-powered white goods, your food is preserved by an electric refrigerator, even your gas cooker if you have one will probably expect a mains supply.

When the power goes out we might say that we instantaneously travel back a couple of centuries, but the reality is that our ancestors in 1817 wouldn’t have been in the same mess we are, they had appropriate solutions to surviving a wickedly cold winter when electricity was still something of a gleam in [Michael Faraday]’s eye. In short, they were prepared in a way most of us are not. That’s a shame, so let’s take a closer look sensible modern preparedness.

Continue reading “Prepping For Power Outages”

A Dynamometer For Measuring Motor Power

If you have ever ventured into the world of motor vehicles you may be familiar with a dynamometer, possibly as a machine to which your vehicle is taken for that all-important printout that gives you bragging rights (or not) when it comes to its ability to lay down rubber. A dynamometer is essentially a variable load for a rotating shaft, something that converts the kinetic energy from the shaft into heat while measuring the power being transferred.

Most of us will never have the chance to peer inside our local dyno, so a term project from a group of Cornell students might be something of interest. They’ve built a dynamometer for characterising small electric motors, and since their work is part of their degree courses, their documentation of it goes into great detail.

Their dynamometer takes the form of a shaft driving a stainless steel disc brake upon which sit a pair of calibers mounted on a fixed shaft that forms a torsion bar. The whole is mounted in a sturdy stainless steel chassis, and is studded with sensors, a brace of strain gauges and a slotted disc rotation sensor. It’s not the largest of dynamometers, but you can learn about these devices from their work just as they have.

This is a project sent to us by [Bruce Land], one of many from his students that have found their way to these pages. His lectures on microcontrollers are very much worth a look.

An Mbed In Your Browser

If you have dabbled in the world of ARM microcontrollers, you might be familiar with the Mbed platform, a software abstraction layer for a range of ARM-based small dev boards. If you don’t have an Mbed board but fancy giving it a go, you might imagine that you’d be out of luck, but [Jan Jongboom] could have an answer to your problem in the form of an Mbed simulation in your browser.

We’re not high-end ARM microcontroller developers here at Hackaday so beyond observing that it brings the Mbed abstraction layer binaries to the browser through the magic of Emscripten it’s best to point the curious at its GitHub repository. But we can see its attraction as a means to take a look at Mbed, and given that [Jan] describes himself as “a developer and evangelist currently working on the Internet of Things for ARM“, it’s safe to say this one comes as they say, from the horse’s mouth.

The Mbed board that is probably most famous is the education-focused micro:bit, but there are plenty of others on the market. Back in 2015 we published a getting started guide, if you are new to the Mbed.

Via Hacker News.

Don’t Get Caught Up In Blockchain Hype

It’s the story of the moment, isn’t it. As the price of Bitcoin continues on its wild and crazy rollercoaster ride, everyone’s talking about cryptocurrencies, and in almost mystical terms, about blockchains. Perhaps to be a little more accurate, we should report that they are talking about The Blockchain, a single entity which it seems is now the answer to all ills.

Of course, there is no single blockchain, instead blockchain technologies form the underpinnings of the cryptocurrency boom. Since little dollar signs seem to be buzzing around in front of everyone talking about that subject, it has attracted the attention of hordes of people with little understanding of it. APNIC have a good article aimed at those people: Don’t Get Caught Up In Blockchain Hype, which is worth a read even if you do understand blockchain technologies.

It makes the point that many large enterprises are considering investments in blockchain technologies, and lists some of the potential pitfalls that they may encounter. There may be a slight element of schadenfreude for some of the technically literate in seeing this in action, but given that such things can have consequences for those among us it’s too important to ignore.

As an analogy of a relatively clueless executive jumping on a tech-driven bandwagon, a software company of our acquaintance had a boss who decided in the heady days before the dotcom crash that the organisation would fully embrace open-source. Something to be welcomed, you might think, but given that the software in question was a commercially sensitive asset upon which all company salaries depended, it was fortunate that he listened to his developers when they explained to him exactly what open source entails.

Whether you are a blockchain savant or an uninterested bystander, it’s worth a read as you may sometime need its arguments to save someone from their own folly. If you fancy a simple example to help understand something of how blockchains work, we’ve got that covered for you.

Bitcoin coins image: Mike Cauldwell [Public domain].

Hardware Heroes: Isambard Kingdom Brunel

There are some notable figures in history that you know of for just one single thing. They may have achieved much in their lifetimes or they may have only been famous for Andy Warhol’s fifteen minutes, but through the lens of time we only know them for that single achievement. Then on the other hand there are those historic figures for whom there is such a choice of their achievements that have stood the test of time, that it is difficult to characterize them by a single one.

[Isambard Kingdom Brunel], in front of the launching chains for the Great Eastern. [Public domain]
Isambard Kingdom Brunel, in front of the launching chains for the Great Eastern. [Public domain]
Such is the case of Isambard Kingdom Brunel, the subject of today’s Hardware Heroes piece. Do we remember him for his involvement in the first successful tunnel to pass beneath a river, as a builder of some of the most impressive bridges on the 19th century, the innovator in all aspects of rail engineering, the man behind the first screw-driven ocean-going iron ship, or do we remember him as all of those and more?

It is possible that if you are not British, or in particular you are not from the West of England, this is the first you’ve heard of Brunel. In which case he is best described as a towering figure of many aspects of engineering over the middle years of the 19th century. His influence extended from civil engineering through the then-emerging rail industry, to shipbuilding and more, and his legacy lives on today in that many of his works are still with us.

Engineering: The Family Trade

Brunel’s father, Marc Brunel, was an engineer and refugee from the French Revolution who found success in providing the British Navy with a mass-production system for wooden pulley blocks as used in the rigging of sailing ships. He enters this story for his grand project, the world’s first tunnel to be dug under a navigable river, beneath London’s River Thames from Rotherhithe to Wapping, and for his patented tunneling shield which made it possible to be dug.

Continue reading “Hardware Heroes: Isambard Kingdom Brunel”

This Coin Cell Can Move That Train!

[Mike Rigsby] has moved a train with a coin cell. A CR2477 cell to be exact, which is to say one of the slightly more chunky examples, and the train in question isn’t the full size variety but a model railroad surrounding a Christmas tree, but nevertheless, the train moved.

A coin cell on its own will not move a model locomotive designed to run on twelve volts. So [Mark] used a boost converter to turn three volts into twelve. The coin cell has a high internal resistance, though, so first the coin cell was discharged into a couple of supercapacitors which would feed the boost converter. As his supercaps were charging, he meticulously logged the voltage over time, and found that the first one took 18 hours to charge while the second required 51 hours.

This is important and useful data for entrants to our Coin Cell Challenge, several of whom are also going for a supercap approach to provide a one-off power boost. We suspect though that he might have drawn a little more from the cell, had he selected a dedicated supercap charger circuit.

Continue reading “This Coin Cell Can Move That Train!”

The Zombie Rises Again: Drone Registration Is Back

It’s a trope of horror movies that demonic foes always return. No sooner has the bad guy been dissolved in a withering hail of holy water in the denoeument of the first movie, than some foolish child in a white dress at the start of the next is queuing up to re-animate it with a careless drop of blood or something. If parents in later installments of popular movie franchises would only keep an eye on their darn kids, it would save everybody a whole lot of time!

The relevant passage can be found in section 1092(d) of the National Defense Authorization Act, on page 329 of the mammoth PDF containing the full text, and reads as follows:

(d) RESTORATION OF RULES FOR REGISTRATION AND MARKING OF UNMANNED AIRCRAFT
.—The rules adopted by the Administrator
of the Federal Aviation Administration in the matter of registration
and marking requirements for small unmanned aircraft (FAA-2015-
7396; published on December 16, 2015) that were vacated by the
United States Court of Appeals for the District of Columbia Circuit
in Taylor v. Huerta (No. 15-1495; decided on May 19, 2017) shall
be restored to effect on the date of enactment of this Act.

This appears to reverse the earlier decision of the court, but does not specify whether there has been any modification to the requirements to prevent their being struck down once more by the same angle of attack. In particular, it doesn’t change any of the language in the FAA Modernization Act of 2012, which specifically prevents the Agency from regulating hobby model aircraft, and was the basis of Taylor v. Huerta. Maybe they are just hoping that hobby flyers get fatigued?

We took a look at the registration system before it was struck down, and found its rules to be unusually simple to understand when compared to other aviation rulings, even if it seemed to have little basis in empirical evidence. It bears a resemblance to similar measures in other parts of the world, with its 250 g weight limit for unregistered machines. It will be interesting both from a legal standpoint to see whether any fresh challenges to this zombie law emerge in the courts, and from a technical standpoint to see what advances emerge from Shenzhen as the manufacturers pour all their expertise into a 250 g class of aircraft.

Thanks [ArduinoEnigma] for the tip.