A series of trapezoidal steel "buckets" attached together to form a metal water wheel. They are arranged around a square center frame that attaches to a hub for the wheel to spin about. The wheel is next to a stream and four people of various ages appear to be talking around it. A cinder block building with a metal roof is in the left background, and an older, yellow stone building is far off in the distance on the right of the image. The landscape is lush, green, and mountainous.

Open Source Waterwheel

Here in the West, power going out is an unusual event. But in more remote regions like the Himalayas, reliable electricity isn’t a given. A group of local craftspeople, researchers, and operators in Nepal have worked together to devise a modular waterwheel system.

Based on a 20-30 cm-wide bucket module consisting of only four galvanized steel components, the wheels can be easily built and deployed using resources and tools that are easy to find anywhere in the world. Current test devices generate between 120 and 1,400 Watts of power, depending on the device’s size.

A software tool was also developed that takes the head and flow rate of a location as inputs to calculate the dimensions of the optimal wheel and expected power output for an installation. This lets communities find ideal sites for power generation and calculate the expected costs.

We’ve covered a few other DIY hydropower setups, from repurposed washing machines to custom scratch builds.

Two nearly-identical black and white images of a solar installation on top of a roof in NYC. The left image purports to be from 1909 while the other says it is from 1884. Both show the same ornate building architecture in the background and angle of the panels.

The Mysterious Case Of The Disappearing Inventor

When combing through the history of technological innovation, we often find that pinning down a given inventor of something can be tricky. [Foeke Postma] at Bellingcat shows us that even the Smithsonian can get it wrong when given faulty information.

The mystery in question is the disappearance of inventor [George Cove] from a photograph of his solar panel system from 1909 and its reuse as evidence of the first photovoltaic solar panel by another inventor, [Charles Fritts], around 1884. Questions first arose about this image in 2021, but whether this was an example of photo manipulation was merely speculation at the time.

Continue reading “The Mysterious Case Of The Disappearing Inventor”

A series of tubes wound up and down as modules in a metal-framed, free-standing wall. The wall is inside a climate-controlled test chamber with a series of differently-colored tubes running behind the free-standing wall.

Cooling Off The Bus Stop

If you’ve taken the bus in the summer, you know it can get hot while you wait on your ride, even if there is a roof over the stop. Researchers at the University of Seville have devised a way to keep you cooler while you wait.

As temperatures around the world get warmer due to climate change, keeping cool in the summer is increasingly not just a matter of comfort. For the prototype in a climate-controlled chamber, 500L of water were cooled with a chiller and used as a thermal reservoir to reduce temps in the bus stop during the day. Pumps circulate the water through panels when a rider approaches the stop, cooling the space by ~8˚C (~14˚F) over a 20 minute period. Pumps for the system and lighting for the stop will be powered via solar panels and keep the system self-contained.

The amount of cooling offered by the system can be controlled by the flow rate of the water. The researchers plan to use Falling-Film radiant cooling in the outdoor version to replace the chiller to cool the water at night. They also say the system can be used for radiant heating in the winter, so it isn’t just for hot climates.

If you want to know how to survive a wet bulb event or want a better way to determine your bus route, we’ve got you covered there too.

[via Electrek]

Four images in as many panes. Top left is a fuchsia bottle with a QR code that only shows up on the smartphone screen held above it. Top right image is A person holding a smartphone over a red wristband. The phone displays a QR code on its screen that it sees but is invisible in the visible wavelengths. Bottom left is a closeup of the red wristband in visible light and the bottom right image is the wristband in IR showing the three QR codes embedded in the object.

Fluorescent Filament Makes Object Identification Easier

QR codes are a handy way to embed information, but they aren’t exactly pretty. New work from MIT’s Computer Science and Artificial Intelligence Laboratory (CSAIL) have a new way to produce high contrast QR codes that are invisible. [PDF]

If this sounds familiar, you may remember CSAILs previous project embedding QR codes into 3D prints via IR-transparent filament. This followup to that research increases the detection of the objects by using an IR-fluorescent filament. Another benefit of this new approach is that while the InfraredTags could be any color you wanted as long as it was black, BrightMarkers can be embedded in objects of any color since the important IR component is embedded in traditional filament instead of the other way around.

One of the more interesting applications is privacy-preserving object detection since the computer vision system only “sees” the fluorescent objects. The example given is marking a box of valuables in a home to be detected by interior cameras without recording the movements of the home’s occupants, but the possibilities certainly don’t end there, especially given the other stated application of tactile interfaces for VR or AR systems.

We’re interested to see if the researchers can figure out how to tune the filament to fluoresce in more colors to increase the information density of the codes. Now, go forth and 3D print a snake with snake in a QR code inside!

Continue reading “Fluorescent Filament Makes Object Identification Easier”

A DeLorean sitting on patchy snow next to a driveway. It's angled away from the viewer to the left showing off the open engine compartment with bright orange high voltage lines coming out of a square metallic charger box.

A DeLorean With An Electrifying Secret

There are few production cars with as much geek cred as the DMC DeLorean. If you want to kick the nerdiness up a notch without doing a full Back to the Future prop-mod, then the next best thing is to make it an EV.

[Bill Carlson] took a 1981 DeLorean and transplanted the drivetrain from a Chevy Bolt to electrify this ride. With the DeLorean being a rear wheel drive vehicle and the Bolt front wheel, there was some amount of component reshuffling to do. The motor is now in the rear of the car along with the main contactor, charger, and motor controller while the batteries are split between a pack in the original engine compartment and another up front under the hood.

The electric power steering and brake booster from the Bolt now also live under the hood, and the accelerator and steering column from the EV were transplanted into the cockpit. [Carlson] still needs to tidy up the interior of the car which is currently a nest of low voltage cables as well as add the cooling system which will bring this stainless monster up to a hefty 3200 lbs (~1450 kg) versus the original 2850 lbs (~1300 kg). We suspect the total bill came in a bit lower than getting an electric DeLorean Alpha5.

This isn’t the first electric DeLorean we’ve covered here, and if that isn’t cool enough, how about this DeLorean-inspired hovercraft?

Continue reading “A DeLorean With An Electrifying Secret”

Jailbreaking Tesla Infotainment Systems

With newer cars being computers on wheels, some manufacturers are using software to put features behind a paywall or thwarting DIY repairs. Industrious hackers security researchers have taken it upon themselves to set these features free by hacking a Tesla infotainment system. (via Electrek)

The researchers from TU Berlin found that by using a voltage fault injection attack against the AMD Secure Processor (ASP) at the heart of current Tesla models, they could run arbitrary code on the infotainment system. The hack opens up the double-edged sword of an attacker gaining access to encrypted PII or a shadetree mechanic “extracting a TPM-protected attestation key Tesla uses to authenticate the car. This enables migrating a car’s identity to another car computer without Tesla’s help whatsoever, easing certain repairing efforts.” We can see this being handy for certain other unsanctioned hacks as well.

The attack is purported as being “unpatchable” and giving root access that survives reboots and updates of the system. Since AMD is a vendor to multiple vehicle companies, the question arises as to how widely applicable this hack is to other vehicles suffering from AaaS (Automotive as a Service).

Longing for a modern drivetrain with the simplicity of yesteryear? Read our Minimal Motoring Manifesto.

An exploded view of an AirPods Pro case. The outer case consists of two long, capsule-shaped sections that enclose several smaller parts including the wireless charging cable, contacts for charging the AirPods themselves, and the top rounded protective piece for the buds that nestles into the top capsule. This version includes screws to fasten everything together instead of adhesives.

Fixing Some More Of Apple’s Design Mistakes

Love them or hate them, there’s no denying that Apple has strayed from the Woz’s original open platform ideal for the Apple II. [Ken Pillonel] is back for another round of fixing Apple’s repairability mistakes with a full complement of 3D printable replacement parts for the AirPods Pro case.

While modeling all of the parts would be handy enough for repairing a device with a 0/10 iFixit score, [Pillonel] modified the parts to go together with screws instead of adhesive so any future repairs don’t require cracking the plastic egg. He says, “By showcasing the potential for repairability, I hope to inspire both consumers and multi-billion dollar companies, like Apple, to embrace sustainable practices in their products.”

[Pillonel]’s repairability exploits may seem familiar to readers from his previous work on adding USB-C to the iPhone and the AirPods Pro case. If you just need to retrieve a lost AirPod, you might try an electromagnet, or you can make a Bluetooth receiver from a pair of knock-off buds.

Continue reading “Fixing Some More Of Apple’s Design Mistakes”