A silver and black bike sits in front of a dark grey bridge. It is on a hard surface next to green grass. The bike has a large basket area in front of the steering tube that then connects to the front wheel which is at the other end of the basket from the handlebars. It is best described as a long john bike, but is a more modern take on it than the wooden box Dutch bike.

Building A Cargo Bike Dream

Cargo bikes can haul an impressive amount of stuff and serve as a car replacement for many folks around the world. While there are more models every year from bike manufacturers, the siren song of a custom build has led [Phil Vandelay] to build his own dream cargo bike.

The latest in a number of experiments in hand-built cargo bike frames, this electrified front-loader is an impressive machine. With a dual suspension and frame-integrated cargo area, this bike can haul in style and comfort. It uses a cable steering system to circumvent the boat-like handling of steering arm long john bikes and includes a number of nice touches like (mostly) internal cable routing.

The video below the break mostly covers welding the frame with [Vandelay]’s drool-worthy frame jig, so be sure to watch Part 2 of the video for how he outfits the bike including the internal cable routing and turning some parts for the cable steering system on the lathe. If you get an urge to build your own cargo bike after following along, he offers plans of this and some of his other cargo bike designs. [Vandelay] says this particular bike is not for the beginner, unlike his previous version built with square tubing.

Looking for more DIY cargo bikes? Checkout this Frankenbike, another front loader, or this Russian trike.

Continue reading “Building A Cargo Bike Dream”

An aluminum box sits on a workbench. It is open and has a message saying "I Love You!" inserted in a wooden slot. There is a switch with a yellow LED on the front and a small compartment to the left of the wooden slot to store paper.

Share Your Feelings Like A Spy

While hackers can deftly navigate their way through circuit diagrams or technical documentation, for many of us, simple social interactions can be challenge. [Simone Giertz] decided to help us all out here by making a device to help us share our feelings.

Like an assignment in Mission: Impossible, this aluminum box can convey your confessions of love (or guilt) and shred them after your partner (or roommate) reads the message. The box houses a small shredder and timer relay under a piece of bamboo salvaged from a computer stand. When the lid is opened, a switch is depressed that starts a delay before the shredder destroys the message. The shredder, timer, and box seem almost made for each other. As [Giertz] says, “Few things are more satisfying than when two things that have nothing to do with each other, perfectly fit.”

While seemingly simple, the attention to detail on this build really sets it apart. The light on the front to indicate a message is present and the hinged compartment to easily clean out shredded paper really make this a next-level project. Our favorite detail might be the little space on the side to store properly-sized paper and a marker.

While the aluminum box is very industrial chic, we could see this being really cool in a vintage metal lunch box as well. If you’re looking for other ways to integrate feelings and technology, checkout how [Jorvon Moss] brings his bots to life or how a bunch of LEDs can be used to express your mood.

Continue reading “Share Your Feelings Like A Spy”

A series of trapezoidal steel "buckets" attached together to form a metal water wheel. They are arranged around a square center frame that attaches to a hub for the wheel to spin about. The wheel is next to a stream and four people of various ages appear to be talking around it. A cinder block building with a metal roof is in the left background, and an older, yellow stone building is far off in the distance on the right of the image. The landscape is lush, green, and mountainous.

Open Source Waterwheel

Here in the West, power going out is an unusual event. But in more remote regions like the Himalayas, reliable electricity isn’t a given. A group of local craftspeople, researchers, and operators in Nepal have worked together to devise a modular waterwheel system.

Based on a 20-30 cm-wide bucket module consisting of only four galvanized steel components, the wheels can be easily built and deployed using resources and tools that are easy to find anywhere in the world. Current test devices generate between 120 and 1,400 Watts of power, depending on the device’s size.

A software tool was also developed that takes the head and flow rate of a location as inputs to calculate the dimensions of the optimal wheel and expected power output for an installation. This lets communities find ideal sites for power generation and calculate the expected costs.

We’ve covered a few other DIY hydropower setups, from repurposed washing machines to custom scratch builds.

Two nearly-identical black and white images of a solar installation on top of a roof in NYC. The left image purports to be from 1909 while the other says it is from 1884. Both show the same ornate building architecture in the background and angle of the panels.

The Mysterious Case Of The Disappearing Inventor

When combing through the history of technological innovation, we often find that pinning down a given inventor of something can be tricky. [Foeke Postma] at Bellingcat shows us that even the Smithsonian can get it wrong when given faulty information.

The mystery in question is the disappearance of inventor [George Cove] from a photograph of his solar panel system from 1909 and its reuse as evidence of the first photovoltaic solar panel by another inventor, [Charles Fritts], around 1884. Questions first arose about this image in 2021, but whether this was an example of photo manipulation was merely speculation at the time.

Continue reading “The Mysterious Case Of The Disappearing Inventor”

A series of tubes wound up and down as modules in a metal-framed, free-standing wall. The wall is inside a climate-controlled test chamber with a series of differently-colored tubes running behind the free-standing wall.

Cooling Off The Bus Stop

If you’ve taken the bus in the summer, you know it can get hot while you wait on your ride, even if there is a roof over the stop. Researchers at the University of Seville have devised a way to keep you cooler while you wait.

As temperatures around the world get warmer due to climate change, keeping cool in the summer is increasingly not just a matter of comfort. For the prototype in a climate-controlled chamber, 500L of water were cooled with a chiller and used as a thermal reservoir to reduce temps in the bus stop during the day. Pumps circulate the water through panels when a rider approaches the stop, cooling the space by ~8˚C (~14˚F) over a 20 minute period. Pumps for the system and lighting for the stop will be powered via solar panels and keep the system self-contained.

The amount of cooling offered by the system can be controlled by the flow rate of the water. The researchers plan to use Falling-Film radiant cooling in the outdoor version to replace the chiller to cool the water at night. They also say the system can be used for radiant heating in the winter, so it isn’t just for hot climates.

If you want to know how to survive a wet bulb event or want a better way to determine your bus route, we’ve got you covered there too.

[via Electrek]

Four images in as many panes. Top left is a fuchsia bottle with a QR code that only shows up on the smartphone screen held above it. Top right image is A person holding a smartphone over a red wristband. The phone displays a QR code on its screen that it sees but is invisible in the visible wavelengths. Bottom left is a closeup of the red wristband in visible light and the bottom right image is the wristband in IR showing the three QR codes embedded in the object.

Fluorescent Filament Makes Object Identification Easier

QR codes are a handy way to embed information, but they aren’t exactly pretty. New work from MIT’s Computer Science and Artificial Intelligence Laboratory (CSAIL) have a new way to produce high contrast QR codes that are invisible. [PDF]

If this sounds familiar, you may remember CSAILs previous project embedding QR codes into 3D prints via IR-transparent filament. This followup to that research increases the detection of the objects by using an IR-fluorescent filament. Another benefit of this new approach is that while the InfraredTags could be any color you wanted as long as it was black, BrightMarkers can be embedded in objects of any color since the important IR component is embedded in traditional filament instead of the other way around.

One of the more interesting applications is privacy-preserving object detection since the computer vision system only “sees” the fluorescent objects. The example given is marking a box of valuables in a home to be detected by interior cameras without recording the movements of the home’s occupants, but the possibilities certainly don’t end there, especially given the other stated application of tactile interfaces for VR or AR systems.

We’re interested to see if the researchers can figure out how to tune the filament to fluoresce in more colors to increase the information density of the codes. Now, go forth and 3D print a snake with snake in a QR code inside!

Continue reading “Fluorescent Filament Makes Object Identification Easier”

A DeLorean sitting on patchy snow next to a driveway. It's angled away from the viewer to the left showing off the open engine compartment with bright orange high voltage lines coming out of a square metallic charger box.

A DeLorean With An Electrifying Secret

There are few production cars with as much geek cred as the DMC DeLorean. If you want to kick the nerdiness up a notch without doing a full Back to the Future prop-mod, then the next best thing is to make it an EV.

[Bill Carlson] took a 1981 DeLorean and transplanted the drivetrain from a Chevy Bolt to electrify this ride. With the DeLorean being a rear wheel drive vehicle and the Bolt front wheel, there was some amount of component reshuffling to do. The motor is now in the rear of the car along with the main contactor, charger, and motor controller while the batteries are split between a pack in the original engine compartment and another up front under the hood.

The electric power steering and brake booster from the Bolt now also live under the hood, and the accelerator and steering column from the EV were transplanted into the cockpit. [Carlson] still needs to tidy up the interior of the car which is currently a nest of low voltage cables as well as add the cooling system which will bring this stainless monster up to a hefty 3200 lbs (~1450 kg) versus the original 2850 lbs (~1300 kg). We suspect the total bill came in a bit lower than getting an electric DeLorean Alpha5.

This isn’t the first electric DeLorean we’ve covered here, and if that isn’t cool enough, how about this DeLorean-inspired hovercraft?

Continue reading “A DeLorean With An Electrifying Secret”