Exploded watch

Casting Time: Exploded Watch In Resin

We’ve all seen the exploded view of complex things, which CAD makes possible, but it’s much harder to levitate parts in their relative positions in the real world. That, however, is exactly what [fellerts] has done with this wristwatch, frozen in time and place.

Inspired by another great project explaining the workings of a mechanical watch, [fellerts] set out to turn it into reality. First, he had to pick the right watch movement to suspend. He settled on a movement from the early 1900s—complex enough to impress but not too intricate to be impractical. The initial approach was to cast multiple layers that stacked up. However, after several failed attempts, this was ruled out. He found that fishing line was nearly invisible in the resin. With a bit of heat, he could turn it into the straight, transparent standoffs he needed.

Even after figuring out the approach of using fishing line to hold the pieces at the right distance and orientation, there were still four prototypes before mastering all the variables and creating the mesmerizing final product. Be sure to head over to his site and read about his process, discoveries, and techniques. Also, check out some of the other great things we’ve seen done with epoxy in the past.

Spin-Casting This Telescope Mirror In Resin Didn’t Go To Plan

For most of us, mirrors are something we buy instead of build. However, [Unnecessary Automation] wanted to craft mirrors of his own for a custom telescope build. As it turns out, producing optically-useful mirrors is not exactly easy.

For the telescope build in question, [Unnecessary Automation] needed a concave mirror. Trying to get that sort of shape with glass can be difficult. However, there’s such a thing as a “liquid mirror” where spinning fluid forms into a parabolic-like shape. Thus came the idea to spin liquid resin during curing to try and create a mirror with the right shape.

That didn’t quite work, but it inspired a more advanced setup where a spinning bowl and dense glycerine fluid was used to craft a silicone mold with a convex shape. This could then be used to produce a resin-based mirror in a relatively stationary fashion. From there, it was just necessary to plate a shiny metal layer on to the final part to create the mirror effect. Unfortunately, the end result was too messy to use as a viable telescope mirror, but we learn a lot about what didn’t work along the way.

The video is a great journey of trial and error. Sometimes, figuring out how to do something is the fun part of a project, even if you don’t always succeed. If you’ve got ideas on how to successfully spin cast a quality mirror, drop them in the comments below. We’ve seen others explore mirror making techniques before, too.

Continue reading “Spin-Casting This Telescope Mirror In Resin Didn’t Go To Plan”

A weather forecast is shown on a blue monochrome cathode ray tube display. It is displaying current conditions, and displays a “The Weather Channel” graphic in the top left corner.

A CRT Display For Retro Weather Forecasting

It would be hard to find any electronics still in production which use CRT displays, but for some inscrutable reason it’s easy to find cheap 4-inch CRTs on AliExpress. Not that we’re complaining, of course. Especially when they get picked up for projects like this Retro CRT Weather Display from [Conrad Farnsworth], which recreates the interface of The Weather Channel’s WeatherStar 4000+ in a suitably 90s-styled format.

The CRT itself takes up most of the space in the enclosure, with the control electronics situated in the base behind the display driver. A Raspberry Pi Zero W provides the necessary processing power, and connects to the CRT through its composite video output.

A custom PCB plugs into the GPIO header on the Raspberry Pi and provides some additional features, such as a rotary encoder for volume and brightness display, a control button, a serial UART interface, and a speaker driver. The design still has one or two caveats: it’s designed to powered by USB, but [Conrad] notes that it draws more current than USB 2.0 can provide, though USB-C should be able to keep up.

On the software side, a Python program displays a cycle of three slides: local weather, regional weather, and a radar display. For the local and regional weather display graphics, [Conrad] created a static background image containing most of the graphics, and the program only generated the dynamic components. For the radar display, the regional map’s outlines come from Natural Earth, and a Python program overlays radar data on them.

We’ve seen other attempts at recreating the unique style of the WeatherStar system, but nothing quite beats the real thing.
Continue reading “A CRT Display For Retro Weather Forecasting”

Casting Shade On “Shade-Tolerant” Solar Panels

Shade is the mortal enemy of solar panels; even a little shade can cause a disproportionate drop in power output. [Alex Beale] reviewed a “revolutionary” shade-tolerant panel by Renology in a video embedded below. The results are fascinating.

While shading large portions of the panels using cardboard to cut off rows of cells, or columns of cells, the shade tolerant panel does very well compared to the standard panel– but when natural, uneven shading is applied to the panel, very little difference is seen between the standard and active panels in [Alex]’s test.  We suspect there must be some active components to keep power flowing around shaded cells in the Renology panel, allowing it to perform well in the cardboard tests. When the whole panel is partially shaded, there’s no routing around it, and it performs normally.

It’s hard to see a real-world case that would justify the extra cost, since most shading doesn’t come with perfect straight-line cutoffs. Especially considering the added cost for this “shade tolerant” technology (roughly double normal panels).

You might see a better boost by cooling your solar panels. Of course you can’t forget to optimize the output with MPPT. It’s possible that a better MPPT setup might have let the Renology panel shine in this video, but we’re not certain. Whatever panels you’re using, though, don’t forget to keep them clean.

Continue reading “Casting Shade On “Shade-Tolerant” Solar Panels”

There are a number of metal cylinders displayed in a line. Each cylinder has a rectangular brass plate mounted to each end, and these brass plates stand upright, with the metal cylinders held horizontally between them.

Home-casting Thermoelectric Alloys

If you want to convert heat into electrical power, it’s hard to find a simpler method than a thermoelectric generator. The Seebeck effect means that the junction of two dissimilar conductors will produce a voltage potential when heated, but the same effect also applies to certain alloys, even without a junction. [Simplifier] has been trying to find the best maker-friendly thermoelectric alloys, and recently shared the results of some extensive experimentation.

The experiments investigated a variety of bismuth alloys, and tried to determine the effects of adding lead, antimony, tin, and zinc. [Simplifier] mixed together each alloy in an electric furnace, cast it into a cylindrical mold, machined the resulting rod to a uniform length, and used tin-bismuth solder to connect each end to a brass electrode. To test each composition, one end of the cylinder was cooled with ice while the other was held in boiling water, then resistance was measured under this known temperature gradient. According to the Wiedemann-Franz law, this was enough information to approximate the metal’s thermal conductivity.

Armed with the necessary data, [Simplifier] was able to calculate each alloy’s thermoelectric efficiency coefficient. The results showed some useful information: antimony is a useful additive at about 5% by weight, tin and lead created relatively good thermoelectric materials with opposite polarities, and zinc was useful only to improve the mechanical properties at the expense of efficiency. Even in the best case, the thermoelectric efficiency didn’t exceed 6.9%, which is nonetheless quite respectable for a homemade material.

This project is a great deal more accessible for an amateur than previous thermoelectric material research we’ve covered, and a bit more efficient than another home project we’ve seen. If you just want to get straight to power generation, check out this project.

Lost Foam Aluminium Alloy Casting

[Kelly Coffield] makes intake manifolds for old Ford throttle bodies for fun, demonstrating an excellent technique for making such things in the small shop. The mould patterns are CNC machined from a solid polystyrene block, with all the necessary gates to feed the aluminium into the mould. The principle is to introduce aluminium from a large central runner into the mould structure, which feeds the gates into the mould parts. The various foam mould components are then glued with an extra brace bar at the bottom to strengthen it.

Dip coating with a refractory slurry

The complete structure is then sprayed with surfactant (just plain old soapy water) and dip-coated in a refractory slurry. The surfactant adjusts the coating’s surface tension, preventing bubbles from forming and ruining the surface quality produced by this critical coating step.

Once a satisfactory coating has been applied and hardened, the structure is placed inside a moulding pan fitted with a pneumatic turbine vibrator, to allow sand to be introduced. The vibrations ease the flow of sand into all the nooks and crannies, fully supporting the delicate mould structure against the weight of the metal, and gases produced as the foam burns away. A neat offset pouring cup is then added to the top of the structure and packed in with more sand to stabilise it. It’s a simple setup that can easily be replicated in any hackerspace or backyard for those motivated enough. [Kelly] is using A356 aluminium alloy, but there’s no reason this technique won’t work for other metals.

It was amusing to see [Kelly] demould by just dumping out the whole stack onto the drive and throwing the extracted casting into a snow bank after quenching. We might as well use all that free Midwest winter cooling capacity! After returning to the shop, [Kelly] would typically perform any needed adjustments, such as improving flatness in the press, while the part was in the ‘as cast temper’ condition. We’ll gloss over the admission of cutting the gates off on the table saw! After these adjustments, the part is artificially aged to a T5-like specification, to give it its final strength and machinability properties. There are plenty more videos on this process on the channel, which is well worth a look.

Aluminium casting is nothing new here, here’s a simple way to cast using a 3D printed pattern. But beware, casting aluminum can be hazardous, it does like to burn.

Continue reading “Lost Foam Aluminium Alloy Casting”

Print Wave Metal Casting

Direct 3D printing of metal remains out of reach for the hobbyist at the moment, so casting is often the next best thing, particularly given the limitations of 3D printed metals. [Denny] from Shake the Future shows us how to simplify the process with “print wave metal casting.”

The first step of printing a PLA object will seem familiar to any 3D print to metal process, but the main differentiator here is pouring the investment casting on the printer build plate itself. We like how he used some G-code to shake the build plate to help remove bubbles. Once the plaster solidifies, the plastic and mold are placed in the microwave to soften the plastic for removal.

The plaster is dried in an oven (or air fryer) and then [Denny] bolts the mold together for the casting process. Adding a vacuum helps with the surface finish, but you can always polish the metal with a generous helping of elbow grease.

If [Denny] seems familiar, you might remember his very detailed breakdown of microwave casting. We’ve seen plenty of different approaches to metal casting over the years here. Need a part in another material? How about casting concrete or resin?

Thanks to [marble] on the Hackaday Discord for the tip!

Continue reading “Print Wave Metal Casting”