Conference badge with the custom chip soldered-on on top left, the custom chip itself in a SOIC-16 package on the top right, two close-up die shots on the bottom

Student Competition Badge Bears Custom Silicon

[Daniel Valuch] shared a fun and record-setting conference badge story (Slovak, translated) with us. He was one of the organizers for the “ZENIT in electronics” event, which is an annual Slovak national competition for students. During the competition, students are assigned a letter+number code for the purpose of result submission anonymity, and organizers are always on the lookout for a fun way to assign these codes – this time, they did it with custom silicon!

It just so happened that [Peter], one of [Daniel]’s colleagues, was at the time working for onsemi who were doing a tapeout and had some free space on their test chips. Of course, they didn’t have to think twice. When it was a student’s turn to draw their identification number, instead of a slip of paper, they received a SOIC-16 package with custom silicon bonded to it. Then, they had to solder it to their competition badge – which was, of course, a PCB. Each chip was individually laser-trimmed to contain the student’s number, and that number could then be decoded using a multimeter – or a reasonably sharp eye.

There’s way more to this competition story than just the badge, but the custom silicon part of it sure caught our eyes. Who knows, maybe next year stars will align again and we’ll see custom silicon on one of the hacker conference badges. After all, things have been advancing rapidly on that front – for instance, since Skywater PDK project’s inception in 2020, there’s been several successful runs already, and if you’d like to learn more, you could check the HackChat we’ve had this year, and this Remoticon 2020 workshop!

Up Your Desk Toy Game With This 3D Printed Escalator

Let’s be real, nobody needs a tiny motorized escalator for their desk. But now that you’ve seen it, can you really say you don’t want one of your own? The design comes our way from [AlexY], and is actually the logical evolution of a manually-operated version released previously. But for our money (and 3D printing time), we’d definitely go with this new motorized variant.

While the core mechanism is largely the same, the powered unit uses a N20 geared motor and an 18650 cell. There’s no fancy motor controller here — just flip the switch and you’ve got 30 RPMs worth of stair-steppin’ action. When you’ve run the cell down, and you will, there’s an onboard TP4056 charging module to keep the good times rolling.

[AlexY] hasn’t had a chance to document the build process for the motorized version of the escalator, but as most of the parts are compatible with the manual version, you should be able to figure it out by referencing the earlier assembly guide.

Hot squirted plastic not your thing? We’ve previously seen a wooden escalator designed to keep a Slinky in motion for as long as it takes for you to realize you could be using your skills for something more constructive.

Continue reading “Up Your Desk Toy Game With This 3D Printed Escalator”

2022 Hackaday Prize: Congratulations To The Winners Of The Hack It Back Challenge

Wow! We knew that the Hack it Back Challenge round of the Hackaday Prize would bring out the clever repairers among you, but we’re still impressed to see the results! This was a tough round for the judges, but they came up with a short list of ten finalists, and we’re pleased to bring them to you here.

The Hack it Back Challenge aimed to keep old gear from being thrown away by performing a heroic repair, giving it a new purpose in life, or otherwise bringing it back to a useful state. Of course, once you’ve got the box open, you start thinking of how to improve whatever the gadget is, and some of our finalists took that in unexpected directions. Continue reading “2022 Hackaday Prize: Congratulations To The Winners Of The Hack It Back Challenge”

Mapping Out The LEDs On An Outlet Tester

The concept of an outlet tester is pretty simple: plug the gadget into a suspect wall receptacle, and an array of LEDs light up in various patterns to alert the user to any wiring faults. They’re cheap, reliable, and instantaneous. Most people wouldn’t give them much more thought than that, but like any good hacker, [Yeo Kheng Meng] wanted to know how these devices worked.

After picking up a relatively advanced model that featured an LCD display capable of showing various stats such as detected voltage in addition to the standard trio of LEDs, he started by using some test leads to simulate various fault conditions to understand the basic principle behind its operation. The next step was to disassemble the unit, which is where things went briefly sideways — it wasn’t until [Yeo Kheng Meng] and a friend had nearly cut through the enclosure that they realized it wasn’t ultrasonically welded liked they assumed, and that the screws holding it together were actually hidden under a sticker. Oops.

The write-up includes some excellent PCB shots, and [Yeo Kheng Meng] was able to identify several components and ascertain their function. He was even able to find some datasheets, which isn’t always such an easy task with these low-cost devices. Unfortunately the MCU that controls the device’s more advanced features is locked away with a black epoxy blob, but he was able to come up with a schematic that explains the rather elegant logic behind the LED display.

This isn’t the first time [Yeo Kheng Meng] has taken apart an interesting piece of hardware for our viewing pleasure, and given the fine job he does of it, we hope it’s not the last either.

AI Creates Your Spreadsheets, Sometimes

We’ve been interested in looking at how AI can process things other than silly images. That’s why the “Free AI Bot that Generates the Excel Formula for Any Problem” caught our eye. Based on GPT-3, it supposedly transforms your problem description into a formula suitable for Excel or Google Sheets.

Our first prompt didn’t work out very well. But that was sort of our fault. When they say “Excel formula” they mean that quite literally. So trying to describe the actual result you want in terms of columns or rows seems to be beyond it. Not realizing that, we asked:

If the sum of column H is greater than 50, multiply column A by 0.33

And got:

=IF(SUM(H:H)>50,A*0.33,0)

A Better Try

Which is close, but not really how anyone even mildly proficient with Excel would interpret that request. But that’s not fair. It really needs to be a y=f(x) sort of problem, we suppose.

Continue reading “AI Creates Your Spreadsheets, Sometimes”

Infant is wearing sensor vest as she is held by her mom. ECG, respiration, and accelerometry data is also showing.

Open Source Wearables For Infants

We’ve seen plenty of hacks that analyze biometric signals as measures of athletic performance, but maybe not as many hacks that are trying to study behavior. Well, that’s exactly what developmental psychologists at Indiana University and the University of East Anglia have done with their open-source, wireless vest for measuring autonomic function in infants.

infant biosensor vest for heart rate, motion, and respiratory rateTheir device includes a number of components we’ve seen already. There is an HC-05 Bluetooth module, AD8232 electrocardiography (ECG) analog front-end, LIS3DH 3-axis accelerometer, MCP73831 LiPo charger, a force-sensitive resistor for measuring respiration, and a Teensy microcontroller. Given how sensitive an infant’s skin can be, they opted for fabric electrodes for the ECG instead of those awful sticky ones that we’re accustomed to. They then interfaced the conductive fabric with copper plates using snap fasteners (or press studs or snap buttons, whichever terminology you’re more familiar with). The copper plates were connected to the circuit board using standard electrical wire. Then, they embedded the sensors into a vest they sewed together themselves. It’s basically a tiny weighted vest for infants but it seems well-padded enough to be somewhat comfortable.

They did a short test analyzing heart and breathing rates during a period of “sustained attention,” basically when you’re quietly fixated on a single object or activity for a period of a few minutes or longer. They were really pleased with the vest’s ability to collect consistent data and noted that heart and respiratory rate variability decreased during the sustained activity test, which was an expected outcome. Apparently, when you’re pretty fixated on a singular task, your body naturally calms down, so to speak, and the variability in some of your physiological responses decreases. Well, unless someone slowly walks up behind you and pinches you, of course.

They provided detailed instructions for recreating the vest, so be sure to check those out. They probably want their device to look a lot less than body armor though. Maybe the Sewbo can help them out with their next iteration.

Junkbox Build Keeps Tesla Coils Perfectly Varnished

Admittedly, not a lot of people have a regular need to varnish coils. It’s mainly something that Tesla coil builders and other high-voltage experimenters are concerned with. But since that group probably constitutes a not insignificant fraction of the Hackaday audience, and because there are probably more applications for this homebrew coil varnishing setup, we figured it would be a good idea to share it.

For [Mads Barnkob], coil maintenance isn’t something to take lightly. If you check out his Kaizer Power Electronics channel on YouTube, you’ll see that he has quite a collection of large, powerful Tesla coils, some of which are used for demos and shows, and others that seem to be reserved mainly for blowing stuff up. To prevent one of his coils from joining the latter group, keeping the coat of insulating varnish on the secondary coil windings in tip-top condition is essential.

The setup seen in the video below helps with that tedious chore. Built entirely from scraps and junk bin parts, the low-speed, low-precision lathe can be set up to accommodate coils of all sizes. In use, the lathe turns the coil very slowly, allowing [Mads] to apply an even coat of varnish over the coil surface, and to keep it from sagging while it dries.

[Mads]’ setup is probably not great for coil winding as it is, but for coil maintenance, it’s just the thing. If your needs are more along the lines of a coil winder, we’ve got a fully automated winder that might work for you.

Continue reading “Junkbox Build Keeps Tesla Coils Perfectly Varnished”