Playing classic games, whether they are games from the golden age of arcades or simply games from consoles that are long out of production, tends to exist on a spectrum. At one end is grabbing a game’s ROM file, finding an emulator, and kludging together some controls on a keyboard and mouse with your average PC. At the other is meticulously restoring classic hardware for the “true” feel of what the game would have felt like when it was new. Towards the latter end is emulating the hardware with an FPGA which the open-source MiSTer project attempts to do. This build, though, adds ATX capabilities for the retrocomputing platform. Continue reading “Classic Gaming With FPGA And ATX”
The Curious Etymology Of The Elements
It’s not often that the worlds of lexicography and technology collide, but in a video by the etymologist [RobWords] we may have found a rare example. In a fascinating 16-minute video he takes us through the origins of the names you’ll find in the periodic table. Here’s a word video you don’t have to be on the staff of a dictionary to appreciate!
Etymology is a fascinating study, in which the scholar must disentangle folk etymologies and mistaken homophones to find the true root of a word. Fortunately in the case of most elements they bear a name bestowed on them by the scientists who discovered them, so their etymologies are rarely in dispute.
The etymologies split neatly into categories, with among them such distinctions as Latin or Greek descriptions, places including the Swedish village of Ytterby which has more elements named after it than anywhere else, elements named for mythological figures, and those named for people.
He artfully skates over the distinction between aluminium and a curiously similar metal the Americans call aluminum, because etymologists are used to deflecting controversy when language differences colour, or even color, people’s emotions. Thank you, Noah Webster!
It’s an entertaining diversion for anyone with a love of both science and of language, and should remind us that the study of language has just as much scientific rigour in its research as any of those elements.
Building A Communications Grid With LoRaType
Almost all of modern society is built around various infrastructure, whether that’s for electricity, water and sewer, transportation, or even communication. These vast networks aren’t immune from failure though, and at least as far as communication goes, plenty will reach for a radio of some sort to communicate when Internet or phone services are lacking. It turns out that certain LoRa devices are excellent for local communication as well, and this system known as LoraType looks to create off-grid text-based communications networks wherever they might be needed.
The project is based around the ESP32 platform with an E22 LoRa module built-in to allow it to operate within its UHF bands. It also includes a USB-based battery charger for its small battery, an e-paper display module to display the text messages without consuming too much power, and a keyboard layout for quickly typing messages. The device firmware lets it be largely automated; it will seek out other devices on the local mesh network automatically and the user can immediately begin communicating with other devices on that network as soon as it connects.
There are a few other upsides of using a device like this. Since it doesn’t require any existing communications infrastructure to function, it can be used wherever there are no other easy options, such as in the wilderness, during civil unrest where the common infrastructure has been shut down, or simply for local groups which do not have access to cell networks or Internet. LoRa is a powerful tool for these use cases, and it’s even possible to network together larger base stations to extend the range of devices like these.
The Nixie Clock From Outer Space
Nixie clocks are nothing new. But [CuriousMarc] has one with a unique pedigree: the Apollo Program. While restoring the Apollo’s Central Timing Equipment box, [Marc] decided to throw together a nixie-based clock. The avionics unit in question sent timing pulses and a mission elapsed time signal to the rest of the spacecraft. Oddly enough, while it had an internal oscillator, it was only used during failures. It normally synched to the guidance computer’s onboard clock.
There is a detailed explanation of the unit, along with some of the ancillary equipment and panels. Much of what the output from the unit is driving counters to display timers, although some of the clocks drive other pieces of equipment, like the telemetry commutator, which time stamps each telemetry frame.
Low Power Challenge: LCD Solar Creatures Live On Sunlight, Sleep At Night
With all those e-paper based projects doing the rounds these days, including in our Low Power Challenge, you’d almost forget that monochrome LCDs were the original ultra-low-power display. Without them, we wouldn’t have had watches, calculators and handheld games operating off button cell batteries or tiny solar panels back in the ’80s and ’90s. [Gabor] decided to build a set of gadgets with a 1990s LCD aesthetic, called LCD Solar Creatures. These cute little beasts live on nothing but solar power and provide some amusing animations on a classic seven-segment LCD screen.
The Creatures’ activity depends entirely on the amount of power that’s available to them. If their supercapacitors dip below 3.3 V, their micros enter a deep sleep state and do nothing except briefly flash an LED every now and then as a sign of life. When light hits the solar panel, the supercaps are charged up and the Creatures come to life and display a few basic stats. Once the caps hit 4.1 V, they really start their day and run a few programs, including a Game of Life-style simulation and an animation of Euclidean rhythms. Continue reading “Low Power Challenge: LCD Solar Creatures Live On Sunlight, Sleep At Night”
Hacking Skis, Rules, And Friendships
The American Birkebeiner is the second largest cross-country skiing race in the world and is quite a big deal within that sport. At 55 kilometers it’s not a short event, either, requiring a significant amount of training to even complete, let alone perform well enough to be competitive. Around a decade ago, friends [Joe] and [Chris] ran afoul of the rules when [Joe] accidentally won the race wearing [Chris]’s assigned entry number, a technicality that resulted in both being banned from the race for two years. Now they’re back, having learned their lesson, and are strictly adhering to those rules this time using these tandem cross-country skis.
The idea for this build was to make sure they could both compete in the race and win because they’d compete in a category no one enters, mostly because it effectively didn’t exist before these two invented it. This required a custom set of skis, but since ski manufacturers don’t typically make skis for two people, they had to get creative. The duo picked up the longest pair of skis they could find at their local ski shop, moving the bindings forward on the skis to make room for the second set of bindings that were added to the back.
This presented a few unique challenges, the first of which is that cross-country skis typically use a special material on the bottom of the skis which grabs the snow to make uphill travel possible, and with the wider distribution of weight this material wasn’t functioning at peak efficiency. The other problem was the stress on the bindings caused by two riders, especially during a crash. This eventually resulted in a broken binding while [Joe] and [Chris] were training. They then upgraded to a more modern pair of skis rated for a single 269-pound rider, had the bindings fitted for two riders, and added a special grip tape over the larger area on the bottom of the ski.
After four months of training and getting in sync, the two were ready for the race. The results are covered in a second video linked below, and while neither of them won the overall race this time, they did finish the event with in-tact skis, first in the new “tandem” class, and completely within the bounds of the strict rules of the race as well. Although winter is winding down in the northern hemisphere, for any of our southern friends looking for some other things to do with an old set of skis for the upcoming winter season, take a look at this sled which adapts some alpine skis to achieve some extremely high speeds.
Supercon 2022: Irak Mayer Builds Self-Sustainable Outdoor IoT Devices
[Irak Mayer] has been exploring IoT applications for use with remote monitoring of irrigation control systems. As you would expect, the biggest challenges for moving data from the middle of a field to the home or office are with connectivity and power. Obviously, the further away from urbanization you get, the sparser both these aspects become, and the greater the challenge.
[Irak] solves his connectivity problem by assuming there is some WiFi network within range, building a system around the Blues Wireless WiFi note card. Substituting their cellular card would be an option for applications out of WiFi range, but presumably without changing too much on the system and software side of things. Leveraging the Adafruit FeatherWing INA219, which is a bidirectional current sensor with an I2C interface, for both the power generation and system consumption measurements. For control, [Irak] is using an Adafruit ESP32 board, but says little more about the hardware. On the software side, [Irak] is using the Blues Wireless NoteHub for the initial connection, which then routes the collected data onto the Adafruit IoT platform for collation purposes. The final part of the hardware is a LiPo battery which is on standby to soak up any excess power available from the energy harvesting. This is monitored by an LC709203f battery fuel gauge.
Continue reading “Supercon 2022: Irak Mayer Builds Self-Sustainable Outdoor IoT Devices”






