Intranasal Vaccines: A Potential Off-Ramp For Coronavirus Pandemics

An interesting and also annoying aspect about the human immune system is that it is not a neat, centralized system where you input an antigen pattern in one spot and suddenly every T and B lymphocyte in the body knows how to target an intruder. Generally, immunity stays confined to specific areas, such as the vascular and lymph system, as well as the intestinal and mucosal (nasal) parts of the body.

The result of this is that specific types of vaccines have a different effect, as is demonstrated quite succinctly with the polio vaccines. The main difference between the oral polio vaccine (OPV) and inactivated vaccine (injected polio vaccine, or IPV) is that the former uses a weakened virus that induces strong immunity in the intestines, something that the latter does not. The effect of this is that while both protect the individual, it does not affect the fecal-oral infection route of the polio virus and thus the community spread.

The best outcome for a vaccine is when it both protects the individual, while also preventing further infections as part of so-called sterilizing immunity. This latter property is what makes the OPV vaccine so attractive, as it prevents community spread, while IPV is sufficient later on, as part of routine vaccinations. The decision to use a vaccine like the OPV versus the IPV is one of the ways doctors can tune a population’s protection against a disease.

This is where the current batch of commonly used SARS-CoV-2 vaccines are showing a major issue, as they do not provide significant immunity in the nasal passage’s mucosal tissues, even though this is where the virus initially infects a host, as well as where it replicates and infects others from. Here intranasal vaccines may achieve what OPV did for polio.

Continue reading “Intranasal Vaccines: A Potential Off-Ramp For Coronavirus Pandemics”

A Drone For The Rest Of Us

As anyone who’s spent Christmas morning trying to shake a quadcopter out of a tree can attest, controlling these fast moving RC vehicles can be tricky and require a bit of practice to master. [Erik] wanted to simplify this a little bit so his children and friends could race with him, and the end result is a drone that only needs two inputs to fly.

The results of his experimentation with simplifying the controls resulted in a “speeder” type drone which attempts to keep a certain distance off of the ground on its own thanks to an extremely fast time-of-flight sensor. The pilot is then left to control the throttle and the steering only, meaning that [Erik] can use pistol-style RC controllers for these machines. They have some similarities to a quadcopter, but since they need to stay level in flight they also have a fifth propeller on the back, similar to an airboat. This allows for a totally separate thrust control than would normally be available on a quadcopter.

The resulting vehicle is immediately intuitive to fly, behaving more like an RC car than a quadcopter. This also required quite a bit of processing power to compute the proper roll and yaw from a single steering input, but after many prototypes the result is impressive, especially since it was also built to use FPV as a means of control. One of the videos below demonstrates this video, and looks extremely fun to fly, and we wouldn’t mind seeing a race with these types of speeders much like we saw in the past with a group of pod-racing quadrotors.

Continue reading “A Drone For The Rest Of Us”

Self-Driving Laboratories Do Research On Autopilot

Scientific research is a messy business. The road to learning new things and making discoveries is paved with hard labor, tough thinking, and plenty of dead ends. It’s a time-consuming, expensive endeavor, and for every success, there are thousands upon thousands of failures.

It’s a process so inefficient, you would think someone would have automated it already. The concept of the self-driving laboratory aims to do exactly that, and could revolutionize materials research in particular.

Continue reading “Self-Driving Laboratories Do Research On Autopilot”

Two e-readers side to side. On the left, you can see the frontal view, showing text on the e-ink screen. On the right, you can see the backside with a semi-transparent 3D-printed cover over it, and two AAA batteries inside a holder in the center.

Open Book Abridged: OSHW E-Reader Now Simplified, Pico-Driven

If you ever looked for open-source e-readers, you’ve no doubt seen [Joey Castillo]’s Open Book reader, but you might not yet have seen the Abridged version he’s building around a Raspberry Pi Pico.

The Open Book project pairs a 4.2″ E-Ink screen with microprocessors we all know and love, building a hacker-friendly e-reader platform. Two years ago, this project won first place in our Adafruit Feather contest — the Feather footprint making the Open Book compatible with a wide range of MCUs, giving hackers choice on which CPU their hackable e-reader would run. Now, it’s time for a RP2040-based reboot.

three PCBs being shown - one soldered-together version with a Pico on it, and two upopulated PCBs, showing front and back, on the populated PCB, you can see the Raspberry Pi Pico and other components soldered on. On the unpopulated PCBs, you can see there's a lot of text helping you understand and assemble this e-reader.This project is designed so that you can assemble it on your own after sourcing parts and PCBs. To help you in the process, the PCB itself resembles a book page – on the silkscreen, there is explanations of what each component is for, as well as information that would be useful for you while hacking on it, conveying the hardware backstory to the hacker about to dive into assembly with a soldering iron in hand. There’s simple but quite functional software to accompany this hardware, too – and, as fully open-source devices go, any missing features can be added.

Joey has recorded a 30-minute video of the Pi Pico version for us, assembling and testing the newly ordered boards, then showing the software successfully booting and operational. The Pi Pico-based revision has been greatly simplified, with a number of self-assembly aspects improved compared to previous versions – the whole process really does take less than half an hour, and he gets it done with a pretty basic soldering iron, too!

If you’re looking for updates on this revision as development goes on, following [Joey] on Twitter is your best bet. He’s no stranger to making devices around us more free and then sharing the secret sauce with all of us! During the 2021 Remoticon he showed off a drop-in replacement mainboard for the Casio F-91W wristwatch, and told us all about reverse-engineering its controller-less segment LCD — worth a listen for any hacker who’s ever wanted to bend these LCDs to their will.

Continue reading “Open Book Abridged: OSHW E-Reader Now Simplified, Pico-Driven”

IBM Made A MIPS Laptop. Will It Make You WinCE?

We’re used to our laptop computers here in 2022 being ultra-portable, super-powerful, and with impressively long battery lives. It’s easy to forget then that there was a time when from those three features the laptop user could usually expect only one of them in their device. Powerful laptops were the size of paving slabs and had battery lives measured in minutes, while anything small usually had disappointing performance or yet again a minuscule power budget.

In the late 1990s manufacturers saw a way out of this in Microsoft’s Windows CE, which would run on modest hardware without drinking power. Several devices made it to market, among them one from IBM which [OldVCR] has taken a look at. It makes for an interesting trip down one of those dead-end side roads in computing history.

In the box bought through an online auction is a tiny laptop that screams IBM, we’d identify it as a ThinkPad immediately if it wasn’t for that brand being absent. This is an IBM WorkPad, a baby sibling of the ThinkPad line intended as a companion device. This one has a reduced spec screen and an NEC MIPS processor, with Windows CE on a ROM SODIMM accessible through a cover on the underside. For us in 2022 MIPS processors based on the open-sourced MIPS ISA are found in low-end webcams and routers, but back then it was a real contender. The article goes into some detail on the various families of chips from that time, which is worth a read in itself.

We remember these laptops, and while the IBM one was unaffordable there was a COMPAQ competitor which did seem tempting for on-the-road work. They failed to make an impact due to being marketed as a high-end executive’s toy rather than a mass-market computer, and they were seen off as “real” laptops became more affordable. A second-hand HP Omnibook 800 did the ultra-portable job on this bench instead.

The industry had various attempts at cracking this market, most notably with the netbooks which appeared a few years after the WorkPad was produced. It was left to Google to reinvent the ultra-portable non-Intel laptop as an internet appliance with their Chromebooks before they would become a mass-market device, but the WorkPad remains a tantalizing glimpse of what might have been.

Windows CE occasionally makes an appearance here, and yes, it runs DOOM.

The NES Gets Its Own OS

Until recently, most video game systems didn’t need their own operating systems in order to play games. Especially in the cartridge era — the games themselves simply ran directly on the hardware and didn’t require the middleman of an operating system for any of the functionality of the consoles. There were exceptions for computers that doubled as home computers such as the Commodore, but systems like the NES never had their own dedicated OS. At least, until [Inkbox] designed and built the NES-OS.

The operating system does not have any command line, instead going directly for a graphical user interface. There are two programs that make up the operating system. The first is a settings application which allows the user to make various changes to the appearance and behavior of the OS, and the second is a word processor with support for the Japanese “Family Keyboard” accessory. The memory on the NES is limited, and since the OS loads entirely into RAM there’s only enough leftover space for eight total files. Those files themselves are limited to 832 bytes, which is one screen’s worth of text without scrolling.

While it might seem limited to those of us living in the modern era, the OS makes nearly complete use of the available processing power and memory of this 1980s system that was best known for Super Mario Bros. and Duck Hunt. It’s an impressive build for such a small package, and really dives into a lot of the hardware and limitations when building software for these systems. If you need more functionality than that, we’d recommend installing Linux on the NES Classic instead.

Continue reading “The NES Gets Its Own OS”

The 1337 PNG Hashquine

A hashquine is a fun way to show off your crypto-tricks — It’s a file that contains its own hash. In some file types it’s trivial, you just pick the hash to hit, and then put random data in a comment or other invisible field till you get a collision. A Python script that prints its own hash would be easy. But not every file type is so easy. Take PNG for instance. these files are split into chunks of data, and each chunk is both CRC-32 and adler32 checksummed. Make one change, and everything changes, in three places at once. Good luck finding that collision. So how exactly did [David Buchanan] generate that beautiful PNG, which does in fact md5sum to the value in the image? Very cleverly.

md5sum hashquine.pngThankfully [David] shared some of his tricks, and they’re pretty neat. The technique he details is a meet-in-the-middle hack, where 36 pairs of MD5 collision blocks are found, with the understanding that these 36 blocks will get added to the file. For each block, either A or B of the pair will get plugged in at that location, and the md5sum won’t change. It’s a total of 2^36 possible combinations of these blocks, which is more computation than was practical for this particular hack. The solution is to pre-compute the results of every possible combination of the first 18 blocks, and store the results in a lookup table. The second half of the collisions are run backwards from a target CRC value, and the result checked against the lookup table. Find a hit, and you just found a series of blocks that matches both your target md5sum and CRC32 results.

Thanks to [Julian] for the tip! And as he described it, this hack is one that gets more impressive the more you think about it. Enjoy!