Companies Rumored To Harvest Washing Machines For ICs

Wired and SCMP are reporting on interesting trivia from the realm of chip shortages. Apparently, some large conglomerate out there is buying new washing machines and scavenging the chips they can’t obtain otherwise. My imagination pictures skilled engineers in a production room, heavy-duty electric screwdrivers and desoldering toolkits on the floor next to them, and a half-torn-down washing machine about to reveal its control board with an STM32 right in the middle. This might not be the most skilled job, but it’s a change of pace, and hey, as long as the rate stays the same?

Whichever company is doing this, they’re in a conundrum for sure. One of the articles offers an example of a $350,000 spectrometer manufacturing being stalled by lack of a $0.50 part – while this feels exaggerated, it’s within the realm of possibility. For car manufacturers, the difference isn’t as dire, but still severe enough, and not meeting the production targets has ramifications other than the financial ones. It might indeed make sense to buy a $150 washing machine in order to finally be able to move a $30,000 car off the assembly line.
Continue reading “Companies Rumored To Harvest Washing Machines For ICs”

Raspberry Pi Pico “Modchip” Unlocks The GameCube

In terms of units sold, it’s no secret that the GameCube was one of Nintendo’s poorest performing home consoles. You could argue increased competition meant sales of the quirky little machine were destined to fall short of the system’s legendary predecessors, but that didn’t keep the Wii from outselling it by a factor of five a few years later. Still, enough incredible games were released for the GameCube that the system still enjoys a considerable fanbase.

Now, with the release of PicoBoot by [webhdx], we suspect the GameCube is about to gain a whole new generation of fans. With just a Raspberry Pi Pico, some jumper wires, and a widely available third-party SD card adapter, this open source project bypasses the console’s original BIOS so it can boot directly into whatever homebrew application the user selects. With how cheap and easy to perform this modification is, we wouldn’t be surprised if it kicked off something of a renaissance for GameCube homebrew development.

Installation takes just five wires.

In the video after the break, [Tito] of Macho Nacho Productions provides a rundown of this new project, including a fantastic step-by-step installation guide that covers everything from soldering the jumper wires to the console’s motherboard to getting the firmware installed on the Pico. He then demonstrates booting the console into various community developed front-ends and tools, showing just how versatile the modification is. While some will see this as little more than an easier way to run bootleg games, we can’t help but be excited about what the future holds now that getting your own code to run on the system is so easy.

Alright, maybe it’s not so easy. To solder on the five wires that will eventually snake their way to the GPIO pins of the Pi Pico, you’ll need to strip the console all the way down to the main board. That wouldn’t be too bad itself, but unfortunately to reach two of the connections you’ll need to remove the system’s massive heatsink — which means you’ll need to clean up the old sticky thermal pads and apply new ones if you don’t want your GameCube to turn into a GameCrisp. It’s nothing that would scare off the average Hackaday reader, but it might give pause to those less handy with an iron.

The release of PicoBoot comes hot on the heels of the revelation that the Raspberry Pi Pico can be used not only as an N64 flash cart but as a supercharged PlayStation Memory Card. These projects would all be significantly improved with a custom RP2040 board, and no doubt that’s the direction they’ll eventually head, but it’s hard not to be impressed by what the low-cost microcontroller development board is capable of in its native form. Especially now that it comes in WiFi flavor.

Continue reading “Raspberry Pi Pico “Modchip” Unlocks The GameCube”

Viewing Atoms With Electrons

When we were in school, they always told us we can’t see atoms. If you have an electron microscope, then they were wrong. [AlphaPhoenix] has access to a scanning tunneling transmission electron microscope and he shows us some atoms in a very thin slice of a crystal.

Of course, you aren’t directly imaging the atoms. You are looking at the shadows of the atoms, but still. If you’ve never worked with a SEM or STEM before, there are plenty of little details that are interesting like the sample holders and the vacuum system.

Continue reading “Viewing Atoms With Electrons”

UART Can’t? Arduino CANSerial Can!

[Jacob Geigle] had a problem. A GPS unit and a Bluetooth-to-serial were tying up all the hardware UARTs on an AVR Arduino project. “Software serial”, I hear you say. But what if I told you [Jacob] already had the board in question sending out data over CAN bus?

[Jacob]’s sweet hack creates an arbitrary number of CAN “devices” inside the Arduino code, and can treat each one of them as its own serial data channel. The “N” in CAN stands for network, after all. The trick is to create a device ID for each desired CANSerial interface, which is done in his library using the usual Arduino setup step. A buffer takes care of storing all the different channels until they can be pushed out over the hardware CAN peripheral. On the big-computer side of things, some software listens for the different “device” enumeration IDs and assigns each a virtual serial port.

While this was a hack born of necessity, we can see it as a clever opportunity to segregate information coming from the microcontroller into different streams. Maybe a debug channel, a command channel, and a data channel? They’re virtual devices, so go nuts!

While we usually see CANbus in its native habitat – inside your car – it’s also cool to think of the uses we could put it to. For instance, controlling a 3D printer. Need a CAN refresher? We’ve got just the ticket.

[Bus photo: Malta Bus; The terminus, Valletta by John Haslam. Can photo: Paint Cans by Daniel R. Blume. Horrible visual pun: I’m afraid that’s on us. You try finding images for CANbus code!]

Photovoltaic Cells In LTSpice

We like to build things using real parts. But we do think the more you can model using tools like LTSpice, the less time you can spend going down dead ends. If you need to model a common component like a resistor or even an active device, most simulators have great models and you can tweak them to have realistic parasitic effects. But what if the component you want isn’t in the library or doesn’t have the fidelity you want? [FesZ] wanted to model photovoltaic cells and had to build his own model. The resulting two videos are well worth watching.

Building your own models in Spice isn’t necessarily very difficult. However, knowing exactly what to add to model different real-world effects can be challenging. The videos do a good job of showing how to mutate a simple diode into one that produces current when exposed to light.

Continue reading “Photovoltaic Cells In LTSpice”

Fighting All That Can Go Wrong With Resin

[Jan Mrázek] is on a quest to make your resin 3D prints more accurate, more functional, and less failure prone. Let’s start off with his recent post on combating resin shrinkage.

When you want a part to have a 35 mm inner diameter, you probably have pretty good reasons, and when you draw a circle in your CAD software, you want a circle to come out in the real world. Resin shrinkage can put a kink in both of these plans. [Jan] identifies three culprits: resin squeezing, resin shrinkage, and exposure bleeding. And these three factors can add up in unexpected ways, so that you’ll get a small reference cube when you print it on its own, but large reference cubes when printed as a group. [Jan]’s article comes with a test piece that’ll help you diagnose what’s going on. Continue reading “Fighting All That Can Go Wrong With Resin”

Think You Know How Mario Kart Works?

In what looks like the kickoff of a fun video series, [MrL314] takes us on a quick but deep tour of how the AI in Mario Kart works. (Video, embedded below.) Don’t play much Mario Kart anymore? Well, have a look anyway because some of the very simple tricks that make Bowser pass Princess Peach without running into her might be useful in any manner of pre-programmed navigation scenarios.

Quick spoilers. The CPU players move through different zones, each with a desired speed and a vector direction field that changes the direction they should point in. Only when they run off course do they actually compute headings to their target. Setting this desired direction and speed beforehand greatly reduces the on-the-fly computation needed.

Then you throw other players into the mix, and a very simple distance-dependant turning algorithm makes for clean overtaking. This effect is hand-tweaked for the particular racecourse, though, because you don’t want Luigi driving off the thin stretches on Rainbow Road. For more technical details, you can check out [MrL314]’s notes.

If anything, this video gives us a further appreciation of the clever little hacks that create apparently complex interactions from tremendously simple rules. Remember Mario Kart when you’re programming in that next multi-gigabyte neural network model, OK?

Continue reading “Think You Know How Mario Kart Works?”