Mobile-Focused Windows 11 Leaves Taskbar Stuck Along The Bottom

Yeah, I’ll admit it: I’m a Windows person. Two years ago this summer, I traded in an overworked Windows 7 laptop that was literally screaming in pain for a SFF Windows 10 box as my main machine. But 10 might mean the end for this scribe, who has used Windows since the late 1980s. Admittedly, it’s for a fairly petty reason — Microsoft have gotten rid of alternate-location taskbar support in Windows 11. As in, you can have the taskbar anywhere you want, as long as it’s the bottom of the screen.

Years ago, I switched my taskbar to the top for various reasons. For one, it just made more sense to me to have everything at the top, and nothing at the bottom to interrupt visual flow while reading a web page or a document. Plenty of people move it to one of the sides or hide it when not in use for the same reason. More importantly, I thought moving the taskbar to the top would help with my neck/shoulder strain issues, and I believe that it has. So oddly enough, this one little thing may be the dealbreaker that gets me to switch after thirty-something years to Linux, where top-aligned taskbars are more or less the norm.

Continue reading “Mobile-Focused Windows 11 Leaves Taskbar Stuck Along The Bottom”

A Line Follower With No Brains

A line follower is a common project for anyone wishing to make a start in robotics, a small wheeled device usually with some kind of optical sensor which allows it to follow a line drawn on the surface over which it runs. In most cases they incorporate a small microcontroller or perhaps an analogue computer which supplies power and steering control, but as the Crayon Car from [Greg Zumwalt] demonstrates, it’s possible to make a line follower without any brains at all.

This seemingly impossible feat is achieved thanks to the line and road surface, it runs on a piece of paper over which the line is drawn with a crayon. The robot has a single straight-line drive wheel at one end and a pair of driven rollers at 90 degrees to each other at the other end, with the magic happening due to the difference in friction between paper and crayon. The robot follows a circular track with no problem, and while we can see it’s not without flaws we doubt it would be possible to make a simpler follower.

Sharp-eyed readers will have noticed that this is not the first line follower we’ve shown you which claims to have no brains, but we’d claim that since the previous machine had an analogue circuit, this one is a more worthy contender to the crown.

Continue reading “A Line Follower With No Brains”

Arm Pumps Up The Volume With Mbed And A Potentiometer

Last time, I told you how to get started with the “Black Pill” STM32F411 board using the Mbed OS. The example program, admittedly, didn’t use many of the features of the OS, unless you count what the USB serial port driver uses behind the scenes. However, this time, we’ll make a practical toy that lets you adjust your PC’s volume level with a pot.

The Black Pill module on a breadboard.

The Black Pill is a good choice for this application since it has analog inputs and can act as a USB keyboard. In fact, the Mbed OS has drivers for all kinds of USB devices. We’ve seen the serial port, but you can also look like a mass storage device or a mouse, for example. Just for practice, we’ll create two threads of execution. One will read the pot and send a message over to the other thread. That thread will communicate with the PC as a USB keyboard. Any computer that understands media keys on a keyboard should work with the device.

Threads

Creating threads is very simple. For many cases, you just define a void function that takes no arguments and use it with a Thread object:

readknobThread.start(vol_thread);

Of course, the function shouldn’t return unless you want the thread to end. As I mentioned in the last post, you can sleep with the ThisThread::sleep_for call. There is also a yield call if you simply want to give up the time slice without sleeping for a specific amount of time.

Continue reading “Arm Pumps Up The Volume With Mbed And A Potentiometer”

Edible Electronics Let Us Hear The Lamentations Of The Chocolate Bunnies

Yet another Day of the Chocolate Bunnies has passed by, and what did you do to mark the occasion? You likely kicked back and relaxed, surrounded by whatever you gave up for Lent, but good for you if you mixed chocolate and electronics like [Repeated Failure] did. They created a completely edible chocolate Easter bunny that screams when bitten.

So obviously, the hardest part is figuring out something to build the circuit with that is both conductive and safe to eat. [Repeated Failure] spent a lot of time with carbon oleogel paste, which is made from natural oils and waxes. Not only was it less conductive than [Repeated Failure]’s skin, it came out pitch black and tasted like nothing, which kind of a bonus, when you think about it.

Then came the cake paint, which [Repeated Failure] laced with trace amounts of silver powder. While that worked somewhat better, a successful circuit would have likely required near-fatal amounts of the stuff. Yikes!

The winner turned out to be edible silver leaf, which is like gold leaf but cheaper. Ever had Goldschläger? Gold leaf is what’s suspended inside. The really nice thing about silver leaf is that it comes in thin sheets and can easily be cut into circuit traces with scissors and connected to I/O pins with copper tape. Be sure to check it out after the break, including [Repeated Failure]’s friend’s reaction to innocently biting the chocolate bunny’s ears off, as one tends to do first.

Think you’d rather hear plants giggle? Sure, it sounds cute, but it’s actually kind of creepy.

Continue reading “Edible Electronics Let Us Hear The Lamentations Of The Chocolate Bunnies”

Bare Metal Gives This Pi Some Classic Synths

We’re used to seeing the Raspberry Pi crop up in a wide range of the projects we show you here, but it’s fair to say that they usually feature some sort of operating system. There’s another way to use a Pi, more akin to using a microcontroller such as the Arduino: by programming it directly, so-called bare-metal programming. MiniDexed is an example, and it copies a classic Yamaha professional synthesiser of the 1980s, by emulating the equivalent of eight of the company’s famous DX7 synthesisers in one unit. It takes almost any Pi, and with the addition of an audio board, a rotary encoder, and an LCD display, makes a ready-to-go unit. Below the break is a video of it in operation.

It’s fair to say that we’re not experts in Raspberry Pi bare metal programming, but it’s worth a diversion into the world of 1980s synthesisers to explore the DX7. This instrument was a staple of popular music throughout the 1980s and was a major commercial success for Yamaha as an affordable FM synthesiser. This was a process patented at Stanford University in the 1970s and subsequently licensed by the company, unlike other synths of the day it generated sound entirely digitally. It’s difficult to overestimate the influence of the DX7 as its sound can be heard everywhere, and it’s not impossible that you own a Yamaha FM synth even today if you have in your possession a sound card.

Curious about the DX7? Master chip-reverse-engineer [Ken Shirriff] exposed its secrets late last year.

Continue reading “Bare Metal Gives This Pi Some Classic Synths”

Ray-Traced Doom Really Shines!

We’re huge fans of taking retro games and adding new graphics features to them, so you had to know that when [Sultim Tsyrendashiev] released his ray-traced Doom engine, we would have to cover it. Now this does break with tradition — instead of running Doom on every conceivable platform, this version requires an AMD or Nvidia ray tracing capable card. On the other hand, the spirit of Doom is certainly alive, as ray-traced Doom has already been demonstrated on the Steam Deck. Check out the video below for a demo, and come back after the break for more info.

The most exciting part of this graphical feat may be the RayTracedGL1 library that “simplifies the process of porting applications with fixed-function pipeline to real-time path tracing.” Besides Doom, there’s also been demos made of Serious Sam and Half-Life 1. There’s even experimental Linux support! We managed to compile and test it on our system, running a 6700 XT and Fedora 35 with bleeding edge Mesa. There are a few visual glitches to work out, but it’s an outstanding project so far. The only complaint we have is that it’s based on prboom, not the still-maintained GZDoom, though with enough attention who knows where the project will go. If this leaves you hungry for more, check out more retro-upgrades, or Doom on more devices.

Continue reading “Ray-Traced Doom Really Shines!”

Honey, Did You Feed The Lamp? Company Wants To Create Living Light Bulbs

The BBC’s [Peter Yeung] had an interesting post about a small French town experimenting with using bioluminescent organisms to provide lighting. A firm called Glowee is spearheading the effort in Rambouillet and other towns throughout France, using a variety of biological techniques to harness nature’s light sources.

Glowing animals are reasonably common ranging from fireflies to railroad worms. In the case of the French street lighting, Glowee is using a marine bacterium known as aliivibrio fischeri. A salt-water tube contains nutrients and when air is flowing through the tube, the bacteria glow with a cool turquoise light. The bacteria enter an anaerobic state and stop glowing if you shut off the air.

Continue reading “Honey, Did You Feed The Lamp? Company Wants To Create Living Light Bulbs”