When New Space Loses Out To NASA Pragmatism

You’ve got to admit, things have been going exceptionally well for SpaceX. In the sixteen years they’ve been in operation, they’ve managed to tick off enough space “firsts” to make even established aerospace players blush. They’re the first privately owned company to not only design and launch their own orbital-class rocket, but to send a spacecraft to the International Space Station. The first stage of their Falcon 9 rocket is the world’s only orbital booster capable of autonomous landing and reuse, and their Falcon Heavy has the highest payload capacity of any operational launch system. All of which they’ve managed to do at a significantly lower cost than their competition.

United Launch Alliance Atlas V

So it might come as a surprise to hear that SpaceX recently lost out on a lucrative NASA launch contract to the same entrenched aerospace corporations they’ve been running circles around for the last decade. It certainly seems to have come as a surprise to SpaceX, at least. Their bid to launch NASA’s Lucy mission on the Falcon 9 was so much lower than the nearly $150 million awarded to United Launch Alliance (ULA) for a flight on their Atlas V that the company has decided to formally protest the decision. Publicly questioning a NASA contract marks another “first” for the company, and a sign that SpaceX’s confidence in their abilities has reached the point that they’re no longer content to be treated as a minor player compared to heavyweights like Boeing and Lockheed Martin.

But this isn’t the first time NASA has opted to side with more established partners, even in the face of significantly lower bids by “New Space” companies. Their decision not to select Sierra Nevada Corporation’s Dream Chaser spaceplane for the Commercial Crew program in 2014, despite it being far cheaper than Boeing’s CST-100 Starliner, triggered a similar protest to the US Government Accountability Office (GAO). In the end, the GAO determined that Boeing’s experience and long history justified the higher sticker price of their spacecraft compared to the relative newcomer.

NASA has yet to officially explain their decision to go with ULA over SpaceX for the Lucy mission, but in light of what we know about the contract, it seems a safe bet they’ll tell SpaceX the same thing they told Sierra Nevada in 2014. The SpaceX bid might be lower, but in the end, NASA’s is willing to pay more to know it will get done right. Which begs the question: at what point are the cost savings not compelling enough to trust an important scientific mission (or human lives) to these rapidly emerging commercial space companies?

Continue reading “When New Space Loses Out To NASA Pragmatism”

From Software To Tindie Hack Chat With Brian Lough

Join us Wednesday at noon Pacific time for the From Software to Tindie Hack Chat!

Brian Lough has followed a roundabout but probably not unusual route to the hardware hacking scene. Educated in Electronic and Computer Engineering, Brian is a software developer by trade who became enamored of Arduino development when the ESP8266 hit the market. He realized the microcontrollers such as these offered incredible capabilities on the cheap, and the bug bit him.

Since then, Brian has fully embraced the hardware hacking way, going so far as to live stream complete builds in a sort of collaborative “hack-along” with his viewers. He’s also turned a few of his builds into legitimate products, selling them on his Tindie store and even going so far as to automate testing before shipping to catch errors and improve quality.

Please join us for this Hack Chat, where we’ll discuss:

  • How software hacking leads to hardware hacking;
  • The creative process and how live streaming helps or hinders it;
  • The implications of going from project to product; and
  • What sorts of new projects might we see soon?

Continue reading “From Software To Tindie Hack Chat With Brian Lough”

Corn Starch Fixes A Game Boy Screen

Nintendo’s Game Boy was the handheld of the 1990s. Like many of their products, it was famous for its ability to stand up to punishment from angry children and military strikes alike. Its biggest weakness is perhaps its unbacklit LCD screen. Retrogamers and chiptuners alike find themselves modifying and replacing these regularly.

A common problem during these swaps is “Newton rings” – an issue where the polarizer comes into contact with the LCD glass, causing unsightly visual artifacts. Thankfully, there is a simple fix. It’s possible to keep the two separated with the application of microscopic particles, too small to see. [esotericsean] uses cornstarch, while [bogamanz] favors diatomaceous earth. For best results, a makeup brush can be used to apply a fine coating, and compressed air used to clean out the Game Boy and remove any excess.

It’s rare to fix a delicate screen problem with a household staple, but gratifying when it works. The results are hard to see on camera, but many report this fixing the frustrating issue. So, if you’re planning to backlight your Game Boy, keep this in your bag of tricks. It’ll allow you to get the best possible result, and may be useful on other old-school LCDs as well. Video after the break.

Continue reading “Corn Starch Fixes A Game Boy Screen”

Does Tesla’s Autosteer Make Cars Less Safe?

In 2016, a Tesla Model S T-boned a tractor trailer at full speed, killing its lone passenger instantly. It was running in Autosteer mode at the time, and neither the driver nor the car’s automatic braking system reacted before the crash. The US National Highway Traffic Safety Administration (NHTSA) investigated the incident, requested data from Tesla related to Autosteer safety, and eventually concluded that there wasn’t a safety-related defect in the vehicle’s design (PDF report).

But the NHTSA report went a step further. Based on the data that Tesla provided them, they noted that since the addition of Autosteer to Tesla’s confusingly named “Autopilot” suite of functions, the rate of crashes severe enough to deploy airbags declined by 40%. That’s a fantastic result.

Because it was so spectacular, a private company with a history of investigating automotive safety wanted to have a look at the data. The NHTSA refused because Tesla claimed that the data was a trade secret, so Quality Control Systems (QCS) filed a Freedom of Information Act lawsuit to get the data on which the report was based. Nearly two years later, QCS eventually won.

Looking into the data, QCS concluded that crashes may have actually increased by as much as 60% on the addition of Autosteer, or maybe not at all. Anyway, the data provided the NHTSA was not sufficient, and had bizarre omissions, and the NHTSA has since retracted their safety claim. How did this NHTSA one-eighty happen? Can we learn anything from the report? And how does this all align with Tesla’s claim of better-than-average safety line up? We’ll dig into the numbers below.

But if nothing else, Tesla’s dramatic reversal of fortune should highlight the need for transparency in the safety numbers of self-driving and other advanced car technologies, something we’ve been calling for for years now.

Continue reading “Does Tesla’s Autosteer Make Cars Less Safe?”

The Cat, The Aircraft, And The Tiny Computer

Sharing your life with a cat is a wonderful and fulfilling experience. Sharing your life with an awake, alert, and bored cat in the early hours when you are trying to sleep, is not. [Simon Aubury] has just this problem, as his cat [Snowy] is woken each morning by a jet passing over. In an attempt to identify the offending aircraft, he’s taken a Raspberry Pi and a software-defined radio, and attempted to isolate it by spotting its ADS-B beacon.

The SDR was the ubiquitous RTL chipset model, and it provided a continuous stream of aircraft data. To process this data he used an Apache Kafka stream processing server into which he also retrieved aircraft identifying data from an online service. Kafka’s SQL interface for interrogating multiple streams allowed him to untangle the mess of ADS-B returns and generate a meaningful feed of aircraft. This in turn was piped into an elasticsearch search engine database, upon which he built a Kibana visualisation.

The result was that any aircraft could be identified at a glance, and potential noise hotspots forecast. Whether all this heavy lifting was worth the end result is for you to decide, however it does provide an interesting introduction to the technologies and software involved. It is however possible to monitor ADS-B traffic considerably more simply.

Thanks [Oleg Anashkin] for the tip.

Adding Real Lenses To An Instant Camera

The Instax SQ6 and Fujifilm’s entire range of instant cameras are fun little boxes that produce instant photos. It’s a polaroid that’s not Polaroid, and like most instant cameras, the lenses are just one or two pieces of plastic. A lens transplant is in order, and that’s exactly what [Kevin] did to his Instax camera.

The key to this lens transplant project is to make it not look like a complete hack job. For this, [Kevin] is keeping the number of custom mechanical parts to a minimum, with just two pieces. There’s a lens shroud that screws down to the current flange on the camera’s plastic chassis, and should blend in perfectly with the rest of the camera. This demanded a significant amount of 3D modeling to get perfect. The other mechanical part is just a plastic disc with a hole in it. These parts were ordered from Shapeways and bolted to the camera with only a few problems regarding spacing and clearances. This didn’t prevent the camera from coming back together, which is when the documentation becomes fast and loose. Who could blame him: the idea of putting real lenses on an instant camera is something few can resist, and the pictures that come out of this modified camera look great.

The current state of the project with a single lens leads the camera to have an inaccurate and tunnel-like viewfinder, but a huge modification brings this project into twin-lens reflex territory. There are more modifications than camera here, but all the printed parts are documented, there are part numbers for McMaster-Carr, and the camera has full control over focusing and framing.

Safely Dive Into Your Fears With Virtual Reality

What makes you afraid? Not like jump-scares in movies or the rush of a roller-coaster, but what are your legitimate fears that qualify as phobias? Spiders? Clowns? Blood? Flying? Researchers at The University of Texas at Austin are experimenting with exposure therapy in virtual reality to help people manage their fears. For some phobias, like arachnophobia, the fear of spiders, this seems like a perfect fit. If you are certain that you are safely in a spider-free laboratory wearing a VR headset, and you see a giant spider crawling across your field of vision, the fear may be more manageable than being asked to put your hand into a populated spider tank.

After the experimental therapy, participants were asked to take the spider tank challenge. Subjects who were not shown VR spiders were less enthusiastic about keeping their hands in the tank. This is not definitive proof, but it is a promising start.

High-end VR equipment and homemade rigs are in the budget for many gamers and hackers, and our archives are an indication of how much the cutting-edge crowd loves immersive VR. We have been hacking 360 recording for nearly a decade, long before 360 cameras took their niche in the consumer market. Maybe when this concept is proven out a bit more, implementations will start appearing in our tip lines with hackers who helped their friends get over their fears.

Via IEEE Spectrum.

Photo by Wokandapix.