An ESP8266 Sundial For Your Wall

Hackers absolutely love building clocks. Seriously, there are few other devices for which we’ve seen such an incredible number of variations. But while the clocks that hackers build might blink out the time in binary, or write it out in words, they generally don’t feature hands. Apparently in 2019 it’s more reasonable to read binary than know which way the “little hand” is supposed to be pointing.

This ESP8266 powered “shadow clock” from [Dheera Venkatraman] technically keeps that tradition intact, but only just. His clock doesn’t feature physical hands, but it does use a strip of RGB LEDs to cast multi-colored shadows which serve the same function. With his clock, you don’t even have to try and figure out which hand is the big one, since they’re all the same length. Now that’s what we call progress.

Probably the biggest surprise about this clock, beyond how legitimately good it looks hanging on the wall, is how little work it takes to build your own version. That’s because [Dheera] specifically set out to design something that was cheaper and easier to build than what he’d seen previously, and we think he delivered on that goal in a big way. All you need are the 3D printed components, an ESP8266 board, and a strip of 144 WS2812B LEDs.

The software side of the project is similarly simplistic, and all you need to do is plug in your WiFi network credentials to have the ESP pull the current time from NTP. If you were so inclined, his source code would be an excellent base on which to implement additional features such as animations at the top of the hour.

Compared to something like the Bulbdial clock from 2009, it’s incredible how simple some of these projects have become in the last decade. With the tools and components available to hackers and makers today, there’s truly never been a better time to build something amazing.

Hacker Abroad: A Very Long Way To China

It turns out that Shanghai is a very long way from my home in Wisconsin. I’ve traveled here for Electronica China, and although it made for an incredibly long travel “day”, it turned out to be quite enjoyable. I hacked some hardware on the plane ride, I took a maglev to my hotel, met up with Sophi for drinks, and explored the neighborhood for some Shanghai breakfast. Continue reading “Hacker Abroad: A Very Long Way To China”

Introducing The Shitty Add-On V1.69bis Standard

The last few years have seen a rise of artistic PCBs. Whether these are one-off projects with a little graphic on the silkscreen or the art of manufacturing and supply chains, these fancy PCBs are here to stay. Nowhere is this more apparent than the loose confederation of Badgelife enthusiasts, a hardware collective dedicated to making expressive and impressive electronic baubles for various hacker conferences. Here, hundreds of different hardware badges are created every year. It’s electronic art, supported by a community.

Some of these badges aren’t technically badges, but rather small, blinky add-ons meant to connect to a main badge, and these add-ons are all backed by a community-derived standard. The Shitty Add-On Standard is how you put smaller PCBs onto bigger PCBs. It is supported by tens of thousands of badges, and all of the people who are spending their free time designing electronic conference badges are using this standard.

It’s been more than a year since the Shitty Add-On standard was created, and in that time the people behind the work have seen the shortcomings of the first edition of the standard. Mechanically, it’s not really that strong, and it would be neat if there were a few more pins to drive RGB LEDs. This has led to the creation of the latest revision of the Shitty Add-On Standard, V.1.69bis. Now, for the first time, this standard is ready for the world to see.

Continue reading “Introducing The Shitty Add-On V1.69bis Standard”

World’s Oldest Computer Festival Is This Weekend

There was a time when owning a home computer was kind of a big deal. In the days before the popularization of the Internet, so-called “computer shows” were the best way to meet with others to swap advice, information, and hardware. Of course today, things are very different. The kind of people who are building their computers just buy the parts online, and everyone else is probably using a $200 laptop from Walmart that isn’t worth spending the time or money on to upgrade.

Small sampling of the talks at TCF 2019

So while the Trenton Computer Festival (TCF) may have started in 1976 as a way for people to buy early computers like the Altair 8800, over the years it has morphed into something much closer to the modern idea of a “con”. Those who visit the 44th TCF on March 23rd at the College of New Jersey will likely spend most of their time at the festival attending the 40+ talks and workshops that will be happening in a span of just six hours. But anyone who’s got some cash to burn can still head over to the flea market area where they’ll be able to buy both modern and vintage hardware.

Talks run the gamut from Arduino to quantum computing, and if you don’t see something that piques your interest in this year’s program, one might wonder how you found yourself reading Hackaday in the first place. If you manage to find some spare time between all the talks, the New Jersey chapter of the The Open Organisation Of Lockpickers (TOOOL) will be there giving a hands-on lock picking class, and if you don’t mind taking the crash course, you can even get your ham radio license. All for the princely sum of just $20 at the door.

In fact, there’s so much going on at TCF that it can be somewhat overwhelming. As I found out during my visit last year, the number of simultaneous events means you’ll almost certainly have some difficult decisions to make. I’ll be making the trip out to the College of New Jersey campus again this year for TCF, and will have plenty of Hackaday stickers and buttons to give out to anyone who manages to stop me while I dash between talks.

A USB MUXer, For All Your Programming Needs

What if there were something like a KVM switch for your micro programmer, logic analyzer, and other various tools? There was a time when KVM switches (keyboard, video, and mouse, by the way) were metal enclosures surrounding an absurdly complicated rotary switch. This fact has a few applications if you ever want to switch a whole lot of stuff; if you ever need a bazillion-pole, two-way rotary switch, don’t spend your money at Mouser or Digikey, just look at eBay for some really old KVM or parallel port switches. Modern times require modern solutions, so here’s a 16-channel, bi-directional switched bus multiplexer. It connects wires to other wires with USB control, and if you need something like this, you really need something like this.

The SensorDots Port MuxR is a crowdfunding project for a project that began as a programming jig for another project. The MappyDot is a micro LIDAR unit that’s about the size of a postage stamp and has a microcontroller. Obviously, programming those microcontrollers was a pain (and don’t get me started on buying pre-programmed microcontrollers from the manufacturer), but there was a solution: a custom programming rig with dozens of pogo pins that automated the programming of an entire panel of boards. It was a useful tool, and now it’s a good idea for a Kickstarter project.

The Port MuxR takes a set of eight pins, and sends that out to one of eight ports. Alternatively, it can take a set of four pins, and send that to sixteen ports. All of this is controlled via USB, and it works with 0-5V signaling. If you know what this means, you probably have a reason to be interested in it.

Is it a sexy project? No, not at all. It’s an 8-pole, 8-throw rotary switch, controllable over USB. It is interesting, and it’s something a lot of us are going to need eventually.

The Joy Of Properly Designed Embedded Systems

The ages-old dream of home automation has never been nearer to reality. Creating an Internet of Things device or even a building-wide collection of networked embedded devices is “easy” thanks to cheap building blocks like the ESP8266 WiFi-enabled microcontroller. Yet for any sizable project, it really helps to have a plan before getting started. But even more importantly, if your plan is subject to change as you work along, it is important to plan for flexibility. Practically, this is going to mean expansion headers and over-the-air (OTA) firmware upgrades are a must.

I’d like to illustrate this using a project I got involved in a few years ago, called BMaC, which grew in complexity and scope practically every month. This had us scrambling to keep up with the changes, while teaching us valuable lessons about how to save time and money by having an adaptable system architecture.

Continue reading “The Joy Of Properly Designed Embedded Systems”

New Part Day: Pyboard D Is Smaller, Wireless, And Has Expansion Modules

Historically, microcontrollers’ limited computing power and storage space meant software had to be written in low-level languages out of necessity. In recent years small affordable chips grew powerful enough that they could theoretically run higher level languages, sparking numerous efforts to turn that theory into reality. MicroPython delivered on this promise in a big way when their Kickstarter-funded pyboard was delivered along with its open source software. Several years have since passed, and now it is time for an upgraded pyboard: the D-series.

We’ve talked with [Damien George] back when the original Kickstarter was still underway. Since the launch of pyboard and release of MicroPython source code, we’ve played with ports running on an ESP8266 and on a BBC micro:bit. The software ecosystem has continued to grow, most recently we looked at LittlevGL graphics library. But just because all the flashy action has been happening on the software side doesn’t mean the hardware side has been sitting stagnant.

Pyboard-D upgraded from original pyboard’s STM32F4 to more capable STM32F7 chips. Witnessing the popularity of MicroPython on networked darlings ESP8266 and ESP32, there will be a pyboard D variant with a Murata 1DX on board for WiFi and Bluetooth connectivity. The new pyboard will be extremely compact with limited edge connections so a fine-pitched connector is required to bring out all the pins. To bring the new pyboard back to its educational and tinkerer roots, a breakout board will take those pins and spread them out in a breadboard friendly form factor. These breakout boards can also host small (12 mm x 12 mm) “tiles” to add individual features.

The wireless pyboard D will obviously invite comparison tests with an ESP32 running MicroPython, and its hardware expansion tiles invites comparison with Adafruit’s Wings. It’ll be interesting to see how they fare once widely available and we can get our hands on them. If you’ve picked up an earlier release at FOSDEM 2019, we invite you to share your experience in comments.

[via Adafruit blog]