Invisible PC Doubles As Heated Seat

Some people really want a minimalist setup for their computing. In spite of his potentially worrisome housing situation, this was a priority for the man behind [Basically Homeless]: clean lines on the desk. Where does the PC go? You could get an all-in-one, sure, but those use laptop hardware and he wanted the good stuff. So he decided to hide the PC in the one place no one would ever think to look: inside his chair.  (Youtube video, embedded below.)

This chair has very respectable specs: a Ryzen 7 9800XD, 64GB of ram and a RTX 4060 GPU, but you’d never know it. The secret is using 50 mm aluminum standoffs between the wooden base of the seat and the chair hardware to create room for low-profile everything. (The GPU is obviously lying sideways and connected with a PCIe riser cable, but even still, it needed a low-profile GPU.) This assemblage is further hidden 3D printed case that makes the fancy chair donated from [Basically Homeless]’s sponsor look basically stock, except for the cables coming out of it. It’s a very niche project, but if you happen to have the right chair, he does provide STLs on the free tier of his Patreon.

This is the first time we’ve seen a chair PC, but desk PCs are something we’ve covered more than once, so there’s obviously a demand to hide the electronics. It remains to be seen if hiding a PC in a chair will catch on, but if nothing else [Basically Homeless] will have a nice heated seat for winter. To bring this project to the next level of minimalism, we might suggest chording keyboards in the armrests, and perhaps a VR headset instead of a monitor.

Continue reading “Invisible PC Doubles As Heated Seat”

Air Fryer rPi upgrade

From Burnt To Brilliant: A Toaster’s Makeover

Appliances fail, but that doesn’t mean it’s the end for them. This impressive hack from [solopilot] shows the results possible when not just fixing but also improving upon its original form. The toaster’s failed function selector switch presented an opportunity to add smart features to the function selection and refine control over its various settings.

Before upgrading the toaster, [solopilot] first had to access its components, which is no trivial task with many modern appliances. Photos document his process of diving into the toaster, exposing all the internals to enable the upgrade. Once everything was accessible, some reverse engineering was required to understand how the failed function selector controlled the half-dozen devices it was wired to.

Toaster App GuiNext came the plan for the upgrades—a long list that included precise temperature control and the ability to send an SMS showing the state of your meal. A Raspberry Pi Zero, a solid-state relay, a relay control board, and a thermocouple were added to the toaster, unlocking far more capability and control than it had originally. Some tuning is required to fully enable these new features and to dial in the precision this once run-of-the-mill toaster is now capable of.

The work wasn’t limited to the toaster itself. [solopilot] also seized the opportunity to create an Android app with speech recognition to control his now one-of-a-kind Cuisinart. It’s probably safe to say his TOA-60 is currently the smartest toaster in the world. If you check out his documentation, you’ll find all the pinouts, circuits, code, and logic explanations needed to add serious improvements to your own toaster. We’ve featured several other toaster oven projects over the years, most of which have focused on turning them into reflow ovens, so it’s exciting to see one aimed at improving upon its original design.

 

 

FLOSS Weekly Episode 834: It Was Cool In 2006

This week Jonathan chats with Ben Meadors and Rob Campbell about the boatload of software Microsoft just released as Open Source! What’s the motivation, why is the new Edit interesting, and what’s up with Copilot? Watch to find out!

Continue reading “FLOSS Weekly Episode 834: It Was Cool In 2006”

Supercon 2024: Using An Oscilloscope To Peek Below The Noise Floor

When you’re hunting for a signal with your oscilloscope, the stronger it is, the better. If it’s weak, you might struggle to tease it out from other interference, or even from the noise floor itself. You might wish that you were looking for something more obvious rather than the electromagnetic equivalent of a needle in a haystack.

Finding hidden signals below the noise floor may be a challenge, but it needn’t be an insurmountable one. James Rowley and Mark Omo came to the 2024 Hackaday Superconference to tell us how to achieve this with the magic of lock-in amplifiers.

Continue reading “Supercon 2024: Using An Oscilloscope To Peek Below The Noise Floor”

Bubble Displays Make A Neat Retro Clock

In 2025 we are spoiled for choice when it comes to displays, with affordable LCDs, OLEDs, TFTs, and e-ink panels of all sizes only a few clicks away. But in decades past, such exotica were not on the menu for casual construction. Instead there were a range of LED seven segment displays which have now largely passed out of use.

Among them were HP’s bubble displays, assemblies of miniature LEDs on a PCB, topped with plastic bubble lenses. If you had a calculator in the 1970s it probably had one, but in the present, [Joshua Coleman] has incorporated one into a pleasingly retro digital clock.

Inside the 3D printed case is an ESP32 with a pair of 74HC595 shift registers to drive the display, and an 18650 battery with all associated charging and protection circuitry. It’s a surprisingly simple circuit, and the code is provided on the page. He makes an apology to non-Americans for his use of US date formats, but we think few readers will be unable to change it to reflect the only date format which really matters.

If you find a bubble display, hang on to it. They’re certainly something we’ve seen before here a few times.

Remotely Interesting: Stream Gages

Near my childhood home was a small river. It wasn’t much more than a creek at the best of times, and in dry summers it would sometimes almost dry up completely. But snowmelt revived it each Spring, and the remains of tropical storms in late Summer and early Fall often transformed it into a raging torrent if only briefly before the flood waters receded and the river returned to its lazy ways.

Other than to those of us who used it as a playground, the river seemed of little consequence. But it did matter enough that a mile or so downstream was some sort of instrumentation, obviously meant to monitor the river. It was — and still is — visible from the road, a tall corrugated pipe standing next to the river, topped with a box bearing the logo of the US Geological Survey. On occasion, someone would visit and open the box to do mysterious things, which suggested the river was interesting beyond our fishing and adventuring needs.

Although I learned quite early that this device was a streamgage, and that it was part of a large network of monitoring instruments the USGS used to monitor the nation’s waterways, it wasn’t until quite recently — OK, this week — that I learned how streamgages work, or how extensive the network is. A lot of effort goes into installing and maintaining this far-flung network, and it’s worth looking at how these instruments work and their impact on everyday life.

Continue reading “Remotely Interesting: Stream Gages”

Washington Consumers Gain Right To Repair For Cellphones And More

Starting January 1st, 2026, Washington state’s new Right to Repair law will come into effect. It requires manufacturers to make tools, parts and documentation available for diagnostics and repair of ‘digital electronics’, including cellphones, computers and similar appliances. The relevant House Bill 1483 was signed into law last week after years of fighting to make it a reality.

A similar bill in Oregon faced strong resistance from companies like Apple, despite backing another Right to Repair bill in California. In the case of the Washington bill, there were positive noises from the side of Google and Microsoft, proclaiming themselves and their products to be in full compliance with such consumer laws.

Of course, the devil is always in the details, with Apple in particular being a good example how to technically comply with the letter of the law, while throwing up many (financial) roadblocks for anyone interested in obtaining said tools and components. Apple’s penchant part pairing is also a significant problem when it comes to repairing devices, even if these days it’s somewhat less annoying than it used to be — assuming you’re running iOS 18 or better.

That said, we always applaud these shifts in the right direction, where devices can actually be maintained and repaired without too much fuss, rather than e.g. cellphones being just disposable items that get tossed out after two years or less.

Thanks to [Robert Piston] for the tip.