A Tiny Knob Keeps You In Control

There are many forms of human interface device beyond the ubiquitous keyboard and mouse, but when it comes to fine-tuning a linear setting such as a volume control there’s nothing quite like a knob. When it comes to peripherals it’s not the size that matters, as proven by  [Stefan Wagner] with the Tiny Knob. It’s a very small PCB with a rotary encoder and knob, an ATtiny85, a USB port, and not much else.

It uses the V-USB software implementation of USB HID, and should you have a need for a Tiny Knob of your own you can find all the files for it in a GitHub repository. There’s even a very professional-looking 3D-printed enclosure for the finishing touch. We like this project for its simplicity, and we think you might too.

Over the years we’ve brought you more than one knob, they appear to be a popular subject for experimentation. If you’re up for more, have a look at this one.

Achieving Human Level Competitive Robot Table Tennis

A team at Google has spent a lot of time recently playing table tennis, purportedly only for science. Their goal was to see whether they could construct a robot which would not only play table tennis, but even keep up with practiced human players. In the paper available on ArXiv, they detail what it took to make it happen. The team also set up a site with a simplified explanation and some videos of the robot in action.

Table tennis robot vs human match outcomes. B is beginner, I is intermediate, A is advanced. (Credit: Google)
Table tennis robot vs human match outcomes. B is beginner, I is intermediate, A is advanced. (Credit: Google)

In the end, it took twenty motion-capture cameras, a pair of 125 FPS cameras, a 6 DOF robot on two linear rails, a special table tennis paddle, and a very large annotated dataset to train multiple convolutional neural networks (CNN) on to analyze the incoming visual data. This visual data was then combined with details like knowledge of the paddle’s position to churn out a value for use in the look-up table that forms the core of the high-level controller (HLC). This look-up table then decides which low-level controller (LLC) is picked to perform a certain action. In order to prevent the CNNs of the LLCs from ‘forgetting’ the training data, a total of 17 different CNNs were used, one per LLC.

The robot was tested with a range of players from a local table tennis club which made clear that while it could easily defeat beginners, intermediate players pose a serious threat. Advanced players completely demolished the table tennis robot. Clearly we do not have to fear our robotic table tennis playing overlords just yet, but the robot did receive praise for being an interesting practice partner. Continue reading “Achieving Human Level Competitive Robot Table Tennis”

Inside The Mecanum Wheel

If you make anything that moves, like a robot, you quickly realize that turning can be a pain. That’s why there are a number of designs for wheels that can go in different directions. One of the most common is the Mecanum wheel. [Jeremy] explains how they work by filming them from below on a transparent table. You can see the enlightening video below.

If you haven’t done anything with omni wheels before, it is disconcerting to see wheels rotating one way causing the vehicle to move at a right angle to the rotation. But this is very useful when you build robots or — as he shows at the start of the video — a forklift.

Continue reading “Inside The Mecanum Wheel”

Proxxon CNC Conversion Makes A Small Mill A Bit Bigger

The Proxxon MF70 mini-mill is a cheap and cheerful, but decently made little desktop mill. As such, it’s been the target of innumerable CNC-ification projects, including an official kit from the manufacturer. But that didn’t stop [Dheera Venkatraman] from sharing his Big Yellow take on this venerable pursuit with us!

This isn’t simply a CNC modification, it’s a wholly 3D-printed CNC modification, which means that you don’t already need a mill to make the usual aluminum pieces to upgrade your mill. And perhaps the standout feature: [Dheera]’s mod basically doubles the Y-axis travel and adds an extra 15 mm of headroom to the Z. If you wanted to stop here, you would have a bigger small manual mill, but as long as you’re at it, you should probably bolt on the steppers and go CNC. It’s your call, because both models are included.

[Dheera] also built a nice enclosure for the MF70, which makes sense because it’s small enough that it could fit on your desktop, and you don’t want it flinging brass chips all over your bench. But as long as it’s on your desk, why not consider a soundproof enclosure for the MF70? Or take the next step, make a nice wooden box, mount a monitor in it, and take the MF70 entirely portable, like this gonzo hack from way back in 2012.

A giemsa stained blood smear from a person with beta thalassemia (Credit: Dr Graham Beards, Wikimedia Commons)

Potential Cure For All Of England’s Beta Thalassemia Patients Within Reach

Beta thalassemia and sickle cell are two red blood cell disorders which both come with massive health implications and shortened lifespans, but at least for UK-based patients the former may soon be curable with a fairly new CRISPR-Cas9 gene therapy (Casgevy) via the UK’s National Health Service (NHS). Starting with the NHS in England, the therapy will be offered to the approximately 460 β thalassemia patients in that part of the UK at seven different NHS centers within the coming weeks.

We previously covered this therapy and the way that it might offer a one-time treatment to patients to definitely cure their blood disorder. In the case of β thalassemia this is done by turning off the defective adult hemoglobin (HbA) production and instead turning the fetal hemoglobin (HbF) production back on. After eradicating the bone marrow cells with the defective genes, the (externally CRISPR-Cas9 modified) stem cells are reintroduced as with a bone marrow transplant. Since this involves the patient’s own cells, no immune-system suppressing medication is necessary, and eventually the new cells should produce enough HbF to allow the patient to be considered cured.

So far in international trials over 90% of those treated in this manner were still symptom-free, raising the hope that this β thalassemia treatment is indeed a life-long cure.

Top image: A giemsa stained blood smear from a person with beta thalassemia. Note the lack of coloring. (Credit: Dr Graham Beards, Wikimedia Commons)

Robot Arm Gives Kids The Roller Coaster Ride Of Their Lives

Unfortunately, [Dave Niewinski]’s kids are still too little to go on a real roller coaster. But they’re certainly big enough to be tossed around by this giant robot arm roller coaster simulator.

As to the question of why [Dave] has a Kuka KR 150 robot in his house, we prefer to leave that unasked and move forward. And apparently, this isn’t his first attempt at using the industrial robot as a motion simulator. That attempt revealed a few structural problems with the attachment between the rider’s chair and the robot’s wrist. After redesigning the frame with stouter metal and adding a small form-factor gaming PC and a curved monitor in front of the seat, [Dave] was ready to figure out how to make the arm simulate the motions of a roller coaster.

Now, if you ever thought the world would be a better place if only we had a roller coaster database complete with 4k 60 fps video captured from real coasters, you’re in luck. CoasterStats not only exists, but it also includes six-axis accelerometer data from real rides of coasters across Europe. That gave [Dave] the raw data he needed, but getting it translated into robot motions that simulate the feeling of the ride was a bit tricky. [Dave] goes into the physics of it all in the video below, but suffice it to say that the result is pretty cool.

More after the break.

Continue reading “Robot Arm Gives Kids The Roller Coaster Ride Of Their Lives”

3D Printed Jet Engine Goes Turbo

Printing a model jet engine is quite an accomplishment. But it wasn’t enough for [linus3d]. He wanted to redesign it to have a turbojet, an afterburner, and a variable exhaust nozzle. You can see how it all goes together in the video below.

This took months of work and it shows. This probably won’t make a good rainy-day weekend project. You do need a few ball bearings and some M2 hardware, but it is mostly 3D printed.

Continue reading “3D Printed Jet Engine Goes Turbo”