Hoverboard Rides On Eddy Currents

The famous hoverboards of Back to the Future haven’t quite gotten here yet, but that hasn’t stopped anyone with a unique personal vehicle from using the name any time they need some quick marketing. The self-balancing scooter trend of the mid-2010s was the best example of this in recent memory, but there are also water-propelled platforms that use the popular name as well as a myriad of other more skateboard-like devices that never got off the ground at all. This project from [Damien Dolata], on the other hand, might be the most authentic prototype we’ve seen compared against the fictional version presented in the movie.

The hoverboard uses a set of rotating magnets, referred to in this build as magneto-rotational repulsors, which spin up to an extremely high rotational speed underneath the board. When above a metal surface, the spinning magnets generate eddy currents in the metal beneath them which create the strong magnetic field needed to levitate the board. Unlike the Lexus hoverboard system which used supercooling magnets, this is a much more affordable way of producing magnetic fields but is a little bit more complicated due to the extra moving parts.

As this is still in the prototyping stages, it has only been able to lift around 30 kg and hasn’t been tested in motion yet, but there are two small turbines built into the hoverboard to generate thrust whenever [Damien] gets to that point. It would require a larger metal surface to move across as well, which might be the main reason why it hasn’t been tested this way yet. For any native French speakers taking a look at this project, be sure to fill in any of our gaps in the comments below, and for other ways that eddy currents have been used in transportation take a look at this bicycle that uses them in its drivetrain.

Continue reading “Hoverboard Rides On Eddy Currents”

Active Racing Simulator Pedal

Racing virtual cars from behind a PC monitor might be cheaper than doing it in the real world, but high-end sim racing peripherals still come with high-end prices. With the increasing popularity of force-feedback pedals [Tristan Fenwick] built built an active pedal that can provide significant resistance.

[Tristan] integrated a load cell into the 3D printed pedal linkage, which is connected to a 130 W NEMA23 servo motor via a 8 mm lead screw. With constant feedback from the load cell, a simple PID controller running on an Arduino to actively adjust the pedal’s position and the amount of resistance it provides.

At ~$250 in parts, it’s a significantly more affordable than the $2300 price tag on a single Simucube pedal, which served as inspiration for this project. There are still some issues to address, such as shaky ADC readings and a lack of computing power on the Arduino, the demo video after the break looks incredibly promising. [Tristan] also notes that 300 kg is overkill and a slightly smaller servo motor would probably also work.

For more incredible simulator inspiration, check out the A-10 Warthog cockpit, a 3D printed flight sim yoke and pedals, and a tank driving simulator from before the age of computer graphics.

Continue reading “Active Racing Simulator Pedal”

Industrial Robot Gets Open-Source Upgrade

Industrial robots are shockingly expensive when new, typically only affordable for those running factories of some sort. Once they’ve gone through their life cycle building widgets, they can be purchased for little more than scrap value, which is essentially free compared to their original sticker price. [Excessive Overkill] explains all of this in a video where he purchased one at this stage to try to revive, but it also shows us how to get some more life out of these robots if you can spend some time hunting for spare parts, installing open-source firmware, and also have the space for a robot that weighs well over a thousand kilograms.

This specific robot is a Fanuc R2000ia with six degrees of freedom and a reach of over two meters. Originally the plan was to patch together a system that could send modern gcode to the Fanuc controller, but this was eventually scrapped when [Excessive Overkill] realized the controller that shipped with this robot was for an entirely different machine and would never work. Attempts to find upgraded firmware were frustrated, and after a few other false starts a solution was found to get the robot working again using LinuxCNC and Mesa FPGA cards, which have built-in support for Fanuc devices like this.

More after the break…

Continue reading “Industrial Robot Gets Open-Source Upgrade”

Hackaday Prize 2023: Meet The Ten Re-Engineering Education Finalists

They say time flies when you’re having fun, and doubly so when you’re hacking hardware. If you can believe it, we’ve already closed out the first challenge of the 2023 Hackaday Prize, and you know what that means — it’s time to announce the 10 finalists.

As a reminder, each of these projects not only takes home $500 USD, but moves on to the next round of judging. During the recently announced 2023 Supercon, we’ll announce the six projects that were selected by our panel of judges to collect their share of $100,000 in prize money– plus a residency at Supplyframe’s DesignLab and eternal hacker glory for the Grand Prize winner.

Continue reading “Hackaday Prize 2023: Meet The Ten Re-Engineering Education Finalists”

Jump Like Mario With This Weighted Wearable

Virtual reality has come a long way in the past decade, with successful commercial offerings for gaming platforms still going strong as well as a number of semi-virtual, or augmented, reality tools that are proving their worth outside of a gaming environment as well. But with all this success they still haven’t quite figured out methods of locomotion that feel natural like walking or running. One research group is leaping to solve one of these issues with JumpMod: a wearable device that enhances the sensation of jumping.

The group, led by [Pedro Lopes] at the University of Chicago, uses a two-kilogram weight worn on the back to help provide the feeling of jumping or falling. By interfacing it with the virtual reality environment, the weight can quickly move up or down its rails when it detects that the wearer is about to commit to an action that it thinks it can enhance. Wearers report feeling like they are jumping much higher, or even smashing into the ground harder. The backpack offers a compact and affordable alternative to the bulky and expensive hardware traditionally used for this purpose.

With builds like these, we would hope the virtual reality worlds that are being created become even more immersive and believable. Of course that means a lot more work into making other methods of movement in the virtual space feel believable (like walking, to start with) but it’s an excellent piece of technology that shows some progress. Augmenting the virtual space doesn’t always need bulky hardware like this, though. Take a “look” at this device which can build a believable virtual reality space using nothing more than a webcam.

Continue reading “Jump Like Mario With This Weighted Wearable”

OScope Advert From 1987 Rocks It

We can’t remember ever seeing a late-night TV ad for oscilloscopes before but, for some reason, Tektronix did produce a video ad in 1987. You can see it below and enjoy the glorious music and video production standards of the 1980s.

We assume this was made to show at some trade show or the like. Even if there was a Home Shopping Network in 1987, we doubt many of these would have been sold despite the assertion they were “low cost” — clearly a relative term in this case.

You’ve got to wonder if the narrator understood what he was saying or if he was just reading from a script. Pretty impressive either way. We loved these old scopes, although we also like having very capable scopes that don’t strain our backs to lift.

On the bright side, these scopes today are pretty affordable on the used market if you can find one that doesn’t need a repair with an exotic part. For example, we found several 2221s or 2221As for under $200 without looking hard. The shipping, of course, could potentially almost double the price.

While you can get a modern scope for $200, it probably isn’t the same quality as a Tektronix. Then again, the new scope won’t have CRTs and exotic Tektronix parts to wear out, either. Picking a scope is a pretty personal affair, though, so one person’s great scope might be another person’s piece of junk.

Continue reading “OScope Advert From 1987 Rocks It”

Exploring The Early Days Of QRP Radio

Morse code might seem obsolete but for situations with extremely limited bandwidth it’s often still the best communications option available. The code requires a fair amount of training to use effectively, though, and even proficient radio operators tend to send only around 20 words per minute. As a result of the reduced throughput, a type of language evolved around Morse code which, like any language, has evolved and changed over time. QRP initially meant something akin to “you are overloading my receiver, please reduce transmitter power” but now means “operating radios at extremely low power levels”. [MIKROWAVE1] explores some of the earlier options for QRP radios in this video.

There’s been some debate in the amateur radio community over the years over what power level constitutes a QRP operation, but it’s almost certainly somewhere below 100 watts, and while the radios in this video have varying power levels, they tend to be far below this upper threshold, with some operating on 1 watt or less. There are a few commercial offerings demonstrated here, produced from the 70s to the mid-80s, but a few are made from kits as well. Kits tended to be both accessible and easily repairable, with Heathkit being the more recognizable option among this category. To operate Morse code (or “continuous wave” as hams would call it) only requires a single transistor which is why kits were so popular, but there are a few other examples in this video with quite a few more transistors than that. In fact, there are all kinds of radios featured here with plenty of features we might even consider modern by today’s standards; at least when Morse code is concerned.

QRP radios in general are attractive because they tend to be smaller, simpler, and more affordable. Making QRP contacts over great distances also increases one’s ham radio street cred, especially when using Morse, although this benefit is more intangible. There’s a large trend going on in the radio world right now surrounding operating from parks and mountain peaks, which means QRP is often the only way to get that done especially when operating on battery power. Modern QRP radios often support digital and voice modes as well and can have surprisingly high prices, but taking some cues from this video about radios built in decades past could get you on the radio for a minimum or parts and cost, provided you can put in the time.

Continue reading “Exploring The Early Days Of QRP Radio”