Hackaday Prize Entry: Elephant AI

[Neil K. Sheridan]’s Automated Elephant Detection System was a semi-finalist in last year’s Hackaday Prize. Encouraged by his close finish, [Neil] is back at it with a refreshed and updated Elephant AI project.

The purpose of Elephant AI is to help humans and elephants coexist by eliminating contact between the two species. What this amounts to is an AI that can herd elephants. For this year’s project, [Neil] did away with the RF communications and village base stations in favor of 4G/3G-equipped, autonomous sentries equipped with Raspberry Pi computers with Go Pro cameras.

The main initiative of the project involves developing a system able to classify wild elephants visually, by automatically capturing images and then attempting to determine the elephant’s gender and age. Of particular importance is the challenge of detecting and controlling bull elephants during musth, a state of heightened aggressiveness that causes bulls to charge anyone who comes near. Musth can be detected visually, thanks to secretions called temporin that appear on the sides of the head. If cameras could identify bull elephants in musth and somehow guide them away from humans, everyone benefits.

This brings up another challenge: [Neil] is researching ways to actually get elephants to move away if they’re approaching humans. He’s looking into nonlethal techniques like audio files of bees or lions, as well as ping-pong balls containing chili pepper.

Got some ideas? Follow the Elephant AI project on Hackaday.io.

Amazing Motion-Capture Of Bendy Things

Have you, dear reader, ever needed to plot the position of a swimming pool noodle in 3D  and in real time? Of course you have, and today, you’re in luck! I’ve compiled together a solution that’s sure to give you the jumpstart on solving this “problem-you-never-knew-you-had.”

Ok, there’s a bit of a story behind this one. Back in my good-ol’ undergrad days, I got the chance to play with tethered underwater robots. I remember fumbling about thinking: “Hmm, with this robot tether, wouldn’t it be sweet to string up a set of IMUs down the length of the tether to estimate the robot’s location in 3-space?” A few years later, I cooked together this IMU Noodle project to play with some real hardware in the spirit of solving that problem. With a little quaternion math, a nifty IMU, and some custom PCBAs, this idea has gone from some idle brain-ramble into a real device. It’s an incredibly interesting example of using available hardware and a little ingenuity to build a system that is unique and dependable.

As for why? I first saw an IMU noodle pop up on these pages back in 2012 and I was baffled. I just had to build one! Now complete, I figured that there’s enough math and fun-loving electronics nuggets to merit a full article for this month’s after-hour adventures. Dear reader, let me tell you a wonderful story where math meets electronics and works up the courage to ask it out for brunch.

Continue reading “Amazing Motion-Capture Of Bendy Things”

Converting A Robotic Motor For Lego Blocks

The Internet has brought a lot of advantage to life, not the least of which is access to really cheap electronic parts. [KarelK166] was buying cheap geared motors for projects, but they didn’t easily work with Lego blocks. He found an easy way to adapt them and–lucky for us–decided to share.

The process is pretty simple. The gearbox has two screws and an elastic band holding it together. Once the gears are exposed, you can drill a hole in two of them with a 4.8mm drill bit. This might take a little practice since the gear needs to hold still, but you also don’t want to crush the plastic teeth. You also need to enlarge a hole in the casing, but that’s easier to clamp down in a vise.

Continue reading “Converting A Robotic Motor For Lego Blocks”

Ask Hackaday: SawStop — Bastion Of Safety Or Patent Troll

At first glance, SawStop seems like a hacker’s dream. A garage tinkerer comes up with a great idea, builds a product around it, and the world becomes a better place. As time has gone on, other companies have introduced similar products. Recently, SawStop successfully stopped Bosch from importing saws equipped with their Reaxx safety system into the USA. This not only impacts sales of new saws, but parts for existing equipment. Who gets screwed here? Unfortunately, it’s the owners of the Bosch saws, who now have a safety feature they might not be able to use in the future. This has earned some bad press for SawStop in forums and on websites like Reddit, where users have gone as far as to call SawStop a patent troll. Is that true or just Internet puffery? Read on and decide for yourself.

Continue reading “Ask Hackaday: SawStop — Bastion Of Safety Or Patent Troll”

Detecting Mobile Phone Transmissions With A Sound Card

Anyone who had a cheap set of computer speakers in the early 2000s has heard it – the rhythmic dit-da-dit-dit of a GSM phone pinging a cell tower once an hour or so. [153armstrong] has a write up on how to capture this on your computer. 

It’s incredibly simple to do – simply plug in a set of headphone to the sound card’s microphone jack, leave a mobile phone nearby, hit record, and wait. The headphone wire acts as an antenna, and when the phone transmits, it induces a current in the wire, which is picked up by the soundcard.

[153armstrong] notes that their setup only seems to pick up signals from 2G phones, likely using GSM. It doesn’t seem to pick up anything from 3G or 4G phones. We’d wager this is due to the difference in the way different cellular technologies transmit – let us know what you think in the comments.

This system is useful as a way to detect a transmitting phone at close range, however due to the limited bandwidth of a computer soundcard, it is in no way capable of actually decoding the transmissions. As far as other experiments go, why not use your soundcard to detect lightning?

Hacked Sea Scooter Lives Another Day

The Seadoo GTI Sea Scooter is a simple conveyance, consisting of a DC motor and a big prop in a waterproof casing. By grabbing on and firing the motor, it can be used to propel oneself underwater. However, [ReSearchITEng] had problems with their unit, and did what hackers do best – cracked it open to solve the problem.

Investigation seemed to suggest there were issues with the logic of the motor controller. The original circuit had a single FET, potentially controlled through PWM.  The user interfaced with the controller through a reed switch, which operates magnetically. Using reed switches is very common in these applications as it is a cheap, effective way to make a waterproof switch.

It was decided to simplify things – the original FET was replaced with a higher-rated replacement, and it was switched hard on and off directly by the original reed switch. The logic circuitry was bypassed by cutting traces on the original board. [ReSearchITEng] also goes to the trouble of highlighting potential pitfalls of the repair – if the proper care isn’t taken during the reassembly, the water seals may leak and damage the electronics inside.

Overall it’s a solid repair that could be tackled by any experienced wielder of a soldering iron, and it keeps good hardware out of the landfill. For another take on a modified DC motor controller, check out the scooter project of yours truly.

 

Decoding NRSC-5 With SDR To Get In Your Car

NRSC-5 is a high-definition radio standard, used primarily in the United States. It allows for digital and analog transmissions to share the original FM bandwidth allocations. Theori are a cybersecurity research startup in the US, and have set out to build a receiver that can capture and decode these signals for research purposes, and documented it online.

Their research began on the NRSC website, where the NRSC-5 standard is documented, however the team notes that the audio compression details are conspicuously missing. They then step through the physical layer, multiplexing layer, and finally the application layer, taking apart the standard piece by piece. This all culminates in the group’s development of an open-source receiver for NRSC-5 that works with RTL-SDR – perhaps the most ubiquitous SDR platform in the world. 

The group’s primary interest in NRSC-5 is its presence in cars as a part of in-car entertainment systems. As NRSC-5 allows data to be transmitted in various formats, the group suspects there may be security implications for vehicles that do not securely process this data — getting inside your car through the entertainment system by sending bad ID3 tags, for instance. We look forward to seeing results of this ongoing research.

[Thanks to Gary McMaster for the tip!]