A Functioning 3D Printer For 10€

There was a time when crowdfunding websites were full of 3D printers at impossibly low prices. You knew that it would turn out to be either blatant vaporware or its delivery date would slip into the 2020s, but still there seemed always to be an eager queue ready to sign up. Even though there were promised models for under $200, $150, and then $100, there had to be a lower limit to the prices they were prepared to claim for their products. A $10 printer on Kickstarter for example would have been just a step too far.

There is a project that’s come close to that mark though, even though the magic figure is 10 euros rather than 10 dollars, so just short of 12 dollars at today’s exchange rate. [Michele Lizzit] has built a functioning 3D printer for himself, and claims that magic 10€ build price. How on earth has he done it? The answer lies in extensive use of scrap components, in this case from broken inkjet printers and an image scanner. These provide all the mechanical parts for the printer, leaving him only having to spend his 10€ on some hot end parts and the printer’s electronics. In an unusual move, the frame of the machine appears to come from a set of cardboard biscuit boxes, a master stroke of junk box construction.

The claimed resolution is 33µm, and using the position encoders from the inkjet printers he is able to make it a closed loop device. We salute his ingenuity in building such an impressive printer from so little, and were we ever locked by the bad guys in a room full of IT junk and lacked a handy escape device, we’d wish to be incarcerated with [Michele] any day over [Angus MacGyver] or [Sgt. Bosco BA Baracus].

You can see the printer in action in the video below the break.

Continue reading “A Functioning 3D Printer For 10€”

Hackaday Prize Entry: Fochica Alerts You

It seems like no one should need to be reminded about the importance of not leaving children in cars, but it still happens. The Fochica project is a Hackaday Prize entry that equips the family minivan with car seat monitors—the name comes from FOrgotten CHild in Car Alert.

It’s an Open Source project consisting of a Bluetooth LE-equipped Arduino that monitors whether the seat is empty or occupied. Paired with a phone app, Fochica monitors pressure sensors and the seat belt’s reed switch to determine whether there’s a kid there. The user’s app checks whether he or she is within Bluetooth range of the car, while also checking whether the kid’s seat is occupied. When the first comes up false and the second true, an alert is sounded.

We could see this technology also being useful for home automation tasks–for instance, reminding you to close the garage door before you go to bed. It’s a great project, and also one of the finalists in the Best Product challenge of the Hackaday Prize this year.

Continue reading “Hackaday Prize Entry: Fochica Alerts You”

Design And 3D Print Robots With Interactive Robogami

Internals of 3D printed “print and fold” robot. [Image source: MIT CSAIL]
Robot design traditionally separates the body geometry from the mechanics of the gait, but they both have a profound effect upon one another. What if you could play with both at once, and crank out useful prototypes cheaply using just about any old 3D printer? That’s where Interactive Robogami comes in. It’s a tool from MIT’s Computer Science and Artificial Intelligence Laboratory (CSAIL) that aims to let people design, simulate, and then build simple robots with a “3D print, then fold” approach. The idea behind the system is partly to take advantage of the rapid prototyping afforded by 3D printers, but mainly it’s to change how the design work is done.

To make a robot, the body geometry and limb design are all done and simulated in the Robogami tool, where different combinations can have a wild effect on locomotion. Once a design is chosen, the end result is a 3D printable flat pack which is then assembled into the final form with a power supply, Arduino, and servo motors.

A white paper is available online and a demonstration video is embedded below. It’s debatable whether these devices on their own qualify as “robots” since they have no sensors, but as a tool to quickly prototype robot body geometries and gaits it’s an excitingly clever idea.

Continue reading “Design And 3D Print Robots With Interactive Robogami”

Superconference Interview: Alan Yates

In 2015, virtual reality was the future, which means we should all have it right now. One of the most technologically impressive VR sets is the HTC Vive, an amazing piece of kit that’s jam-packed with sensors and has some really cool tech going on inside it.

One of the developers of the HTC Vive and the ever-important ‘Lighthouse’ position sensors is [Alan Yates]. He’s of Valve and gave a talk at last year’s Superconference on Why the Lighthouse Can’t Work. Being able to determine the absolute position of the Valve’s headset is hard, but absolutely necessary for VR. Anything else would be an incomplete VR experience at best, and give you nausea at worst.

We sat down with [Alan] after his talk last year, and now that interview is up. You can check that out below.

Continue reading “Superconference Interview: Alan Yates”

Raspberry Pi automated greenhouse

Raspberry Pi Is The Brains Behind Automated Greenhouse

[Asa Wilson] and his wife picked up a 10’x12′ greenhouse from Harbor Freight that for their location required some serious changes, understandable since they’re in Colorado on the western slope of Pike’s Peak where the winds are strong and the normal growing season is short. After assembling it on a concrete footing and adding some steel bracing, they got to work on adding an environment management system based around a Raspberry Pi. Read on for a look at the modifications they made.

Continue reading “Raspberry Pi Is The Brains Behind Automated Greenhouse”

Cluephone For Partiers

[Sam Horne] adapted an old school landline phone to deliver clues to birthday party guests. When guests find a numerical clue, they type it into the keypad to hear  the next clue, which involves decoding some Morse code.

The phone consists of an Arduino Pro Mini, a MP3/WAV trigger, and the phone itself, of which the earpiece and keypad have been reused. [Sam] had to map out the keypad and solder leads connecting the various contact points of the phone’s PCB to the Arduino’s digital pins. He used a digitally-generated voice to generate the audio files, and employed the Keypad and Password Arduino libraries to deliver the audio clues.

This seems like a great project to do for a party of any age of attendee, though the keying speed is quick. Hopefully [Sam]’s guests have a high Morse WPM or are quick with the pen! For more keypad projects check out this custom shortcut keyboard and printing a flexible keyboard.

Continue reading “Cluephone For Partiers”

Blast Your Battery’s Sulphates, Is It Worth It?

When a friend finds her caravan’s deep-cycle battery manager has expired over the summer, and her holiday home on wheels is without its lighting and water pump, what can you do? Faced with a dead battery with a low terminal voltage in your workshop, check its electrolyte level, hook it up to a constant current supply set at a few hundred mA, and leave it for a few days to slowly bring it up before giving it a proper charge. It probably won’t help her much beyond the outing immediately in hand, but it’s better than nothing.

A lot of us will own a lead-acid battery in our cars without ever giving it much thought. The alternator keeps it topped up, and every few years it needs replacing. Just another consumable, like tyres or brake pads. But there’s a bit more to these cells than that, and a bit of care and reading around the subject can both extend their lives in use and help bring back some of them after they have to all intents and purposes expired.

One problem in particular is sulphation of the lead plates, the build-up of insoluble lead sulphate on them which increases the internal resistance and efficiency of the cell to the point at which it becomes unusable. The sulphate can be removed with a high voltage, but at the expense of a dangerous time with a boiling battery spewing sulphuric acid and lead salts. The solution therefore proposed is to pulse it with higher voltage spikes over and above charging at its healthy voltage, thus providing the extra kick required to shift the sulphation build up without boiling the electrolyte.

If you read around the web, there are numerous miracle cures for lead-acid batteries to be found. Some suggest adding epsom salts, others alum, and there are even people who talk about reversing the charge polarity for a while (but not in a Star Trek sense, sadly). You can even buy commercial products, little tablets that you drop in the top of each cell. The problem is, they all have the air of those YouTube videos promising miracle free energy from magnets about them, long on promise and short on credible demonstrations. Our skeptic radar pings when people bring resonances into discussions like these.

So so these pulse desulphators work? Have you built one, and did it bring back your battery from the dead? Or are they snake oil? We’ve featured one before here, but sadly the web link it points to is now only available via the Wayback Machine.