Cheap Powerbank Logic And Teardown

A fixture on many British high streets are pound shops. You may have an equivalent wherever in the world you are reading this; shops in which everything on sale has the same low price. They may be called dollar stores, one-Euro stores, or similar. In this case a pound, wich translates today to a shade under $1.24.

Amid the slightly random selection of groceries and household products are a small range of electronic goods. FM radios, USB cables and hubs, headphones, and mobile phone accessories. It was one of these that caught [Julian Ilett]’s eye, a USB power bank. (Video embedded below.)

You don’t get much for a quid, and it shows in this product. A USB cable that gets warm at the slightest current, a claimed 800 mA of output at 5V from a claimed 1200 mAh capacity, and all from an 18650 Li-ion cell of indeterminate origin. The active component is an FM9833E SOIC-8 switching regulator and charger (220K PDF data sheet, in Chinese).

A straightforward teardown of a piece of near-junk consumer electronics would not normally be seen as something we’d tempt you with, but [Julian] goes on to have some rather pointless but entertaining fun with these devices. If you daisy-chain them, they can be shown to have the properties of rudimentary digital logic, and in the video we’ve put below the break it is this that he proceeds to demonstrate. We see a bistable latch, a set-reset latch, a very slow astable multivibrator, and finally he pulls out a load more power banks for a ring oscillator.

If only [MacGyver] had found himself trapped in a container of power banks somewhere from which only solving a complex mathematical conundrum could release him, perhaps he could have fashioned an entire computer! The best conclusion is the one given at the end of the video by [Julian] himself, in which he suggests (and we’re paraphrasing here) that if you feel the idea to be unworthy of merit, you can tell him so in the comments.

Continue reading “Cheap Powerbank Logic And Teardown”

Alan Yates: Why Valve’s Lighthouse Can’t Work

[Alan Yates] is a hacker’s engineer. His job at Valve has been to help them figure out the hardware that makes virtual reality (VR) a real reality. And he invented a device that’s clever enough that it really should work, but difficult enough that it wasn’t straightforward how to make it work.

In his presentation at the Hackaday Supercon 2016, he walked us through all of the design and engineering challenges that were eventually conquered in getting the Lighthouse to market. We’re still a bit overwhelmed by the conceptual elegance of the device, so it’s nice to have the behind-the-scenes details as well.

Continue reading “Alan Yates: Why Valve’s Lighthouse Can’t Work”

I Think I Failed. Yes, I Failed.

Down the rabbit hole you go.

In my particular case I am testing a new output matching transformer design for an audio preamplifier and using one of my go to driver circuit designs. Very stable, and very reliable. Wack it together and off you go to test and measurement land without a care in the world. This particular transformer is designed to be driven with a  class A amplifier operating at 48 volts in a pro audio setting where you turn the knobs with your pinky in the air sort of thing. Extra points if you can find some sort of long out of production parts to throw in there for audiophile cred, and I want some of that.

img_2857-2Lets use some cool retro transistors! I merrily go along for hours designing away. Carefully balancing the current of the long tailed pair input. Picking just the right collector power resistor and capacitor value to drive the transformer. Calculating the negative feedback circuit for proper low frequency cutoff and high frequency stability, and into the breadboard the parts go — jumper clips, meter probes, and test leads abound — a truly joyful event.

All of the voltages check out, frequency response is what you would expect, and a slight tweak to the feedback look brought everything right into happiness. Time to fire up the trusty old HP 334A Distortion Analyzer. Those old machines require you to calibrate the input circuit and the volt meter, tune a filter to the fundamental frequency you are applying to the device under test and step down to lower and lower orders of distortion levels until the meter happily sits somewhere in the middle of a range.

Most modern circuits in even cheap products just go right down to sub .1% total harmonic distortion levels without even a thought and I expected this to be much the same. The look of horror must have been pronounced on my face when the distortion level of my precious circuit was something more akin to a clock radio! A frantic search began. Was it a bad jumper, or a dirty lead in the breadboard, or an unseated component? Was my function generator in some state of disrepair? Is the Stephen King story Maximum Overdrive coming true and my bench is going to eat me alive? All distinct possibilities in this state of panic.

Continue reading “I Think I Failed. Yes, I Failed.”

A Menorah For The 21st Century

For those new and experienced, this time of year is a great chance for enterprising makers to apply their skills to create unique gifts and decorations for family and friends. [Mike Diamond] of What I Made Today built a phone controlled, light-up menorah. It’s a charming way to display some home automation know-how during the holidays.

Expanding on his previous project — a pocket-sized menorah — a Raspberry Pi Zero with a WiFi dongle, some LEDs, wire, and tea lights suffice for the materials, while setting-up Blynk on the Raspberry Pi and a phone to control the lights ties it together after mounting it in an old monitor housing.

Continue reading “A Menorah For The 21st Century”

So Where’s My Low Voltage DC Wall Socket?

What are the evocative sounds and smells of your childhood? The sensations that you didn’t notice at the time but which take you back immediately? For me one of them is the slight smell of phenolic resin from an older piece of consumer electronics that has warmed up; it immediately has me sitting cross-legged on our living room carpet, circa 1975.

"Get ready for a life that smells of hot plastic, son!" John Atherton [CC BY-SA 2.0], via Wikimedia Commons.
“Get ready for a life that smells of hot plastic, son!” John Atherton [CC BY-SA 2.0], via Wikimedia Commons.
That phenolic smell has gone from our modern electronics, not only because modern enclosures are made from ABS and other more modern plastics, but because the electronics they contain no longer get so hot. Our LCD TV for instance nowadays uses only 50 watts, while its 1970s CRT predecessor would have used several hundred. Before the 1970s you would not find many household appliances that used less than 100 watts, but if you take stock of modern electrical appliances, few use more than that. Outside the white goods in your kitchen and any electric heaters or hair dryers you may own, your appliances today are low-powered. Even your lighting is rapidly being taken over by LEDs, which are at their heart low-voltage devices.

There are many small technological advancements that have contributed to this change over the decades. Switch-mode power supplies, LCD displays, large-scale integration, class D audio and of course the demise of the thermionic tube, to name but a few. The result is often that the appliance itself runs from a low voltage. Where once you would have had a pile of mains plugs competing for your sockets, now you will have an equivalent pile of wall-wart power supplies. Even those appliances with a mains cord will probably still contain a switch-mode power supply inside.

Continue reading “So Where’s My Low Voltage DC Wall Socket?”

UK Government To Hold Drone Licensing Consultation

All over your TV and radio this morning if you live in the UK is the news that the British government is to hold a consultation over the licensing of multirotors, or drones as they are popularly known. It is being reported that users will have to sit a test to acquire a licence before they can operate any machine that weighs above 250 g, and there is the usual fog of sloppy reporting that surrounds any drone story.

This story concerns us on several fronts. First, because many within our community are multirotor enthusiasts and thus we recognise its importance to our readership. And then because it takes as its basis of fact a series of reported near misses with aircraft that look very serious if taken at face value, but whose reported facts simply don’t match the capabilities of real multirotors. We’ve covered this issue in the past with an incident-by-incident analysis, and raised the concern that incident investigators behave irresponsibly in saying “It must have been a drone!” on the basis of no provable evidence. Indeed the only proven British collision was found to have been with a plastic bag.

Of course irresponsible multirotor fliers who threaten public safety should be brought to book. Lock them up, throw away the key, whatever is appropriate. But before that can be done, any debate must be conducted on a level playing field. Our final concern is that this is an issue which is being framed almost entirely on the basis of one side’s interest groups and hysteria on the part of the uninformed about a new technology, rather than a balanced examination of the issues involved. It’s the old “People are having fun. This must be stopped!” idea that infects so much lawmaking, and it’s not very pretty.

Fortunately while it is being reported in some quarters as a done deal as in “Drone fliers must sit a test”, in fact this story is “The Government will ask people what they think about drone fliers sitting a test”. It’s a consultation, which means a Parliamentary committee will sit down and hear evidence before deciding on any legislation. The good news about consultations is that they are open to submissions from the general public, so if you are a British multirotor flier you can submit your own arguments. We will keep you posted with any news about the consultation as we have it.

Header image: 최광모 [CC BY-SA 4.0], via Wikimedia Commons.

Collider Prints Hollow Shells, Fills Them

3D printing is full of innovations made by small firms who’ve tweaked the same basic ideas just a little bit, but come up with radically different outcomes. Collider, a small startup based in Chattanooga TN, is producing a DLP resin printer that prints hollow molds and then fills them.

colliderThat’s really all there is to it. The Orchid machine prints a thin shell using a photocuring resin, and uses this shell as the mold for various two-part thermoset materials: think epoxies, urethanes, and silicones. The part cures and the shell is dissolved away, leaving a solid molded part with the material properties that you chose.

This is a great idea for a couple of reasons. DLP-based resin printers can have very fine features, but they’re slow as dirt when a lot of surface area needs to be cured. By making thin-walled molds, this stage can go faster. The types of UV-curing resins out there for use in resin printers is limited by the need to photo-cure, while the spectrum of two-part plastic materials is much broader. Finally, resin printers are great for printing single topologically-simple objects, and molds are essentially just vases.

Continue reading “Collider Prints Hollow Shells, Fills Them”