Artificial Muscles To Bring Relief To Robotic Tenseness

Custom, robotic prosthesis are on the rise. In numerous projects, hackers and makers have taken on the challenge. From Enabling The Future, Open Hand Project, OpenBionics to the myriad prosthesis projects on Hackaday.io. Yet, the mechatronics that power most of them are still from the last century. At the end of the day, you can only fit so many miniature motors and gears into a plastic hand, and only so many hydraulics fit onto an arm or leg before it becomes a slow, heavy brick – more hindering than helpful. If only we had a few extra of these light, fast and powerful actuators that help us make it through the day. If only we had artificial muscles.

Continue reading “Artificial Muscles To Bring Relief To Robotic Tenseness”

Hacking The Tesla Model S Rear Drive Unit

[Jason Hughes] is a big fan of Tesla, he’s spent a lot of time hacking on them to figure out what fancy things the automaker is up to. His most recent adventures are with the rear drive unit of a Tesla Model S.

[Jason] has had some fame in the Tesla community before; his most publicized hack was finding the model number for Tesla’s next edition of their car hashed away in the firmware. For this project he procured a rear drive unit from… somewhere, and with some help got it onto his bench at home.

His first steps were to hook it up to some power and start sniffing the CAN bus for commands. It took him a few hours but he was able to get the motor turning. He kept working at it until he had the full set of commands. So, he hooked up circulating water to the unit for cooling, and put it through its paces (at one point the unit announced it was now traveling at 117mph).

In the end he was able to get all the features working, including generation! He even made his own board for contrl. Just listening to the motor spin up is satisfying. Videos after the break.

Continue reading “Hacking The Tesla Model S Rear Drive Unit”

The World’s Supply Of DB-19 Connectors

[Steve] over at Big Mess O’ Wires has a very, very niche product. It’s the Floppy Emu, a hard disk emulator for the Apple II, Lisa, and very old Macs. The Floppy Emu takes data stored on an SD card and presents it to these classic computers through a contemporary connector, the venerable DB-19. This connector is in the same family as the familiar DB-25 parallel port, DE-9 serial port and the old DA-15 joystick port, but there’s something very special about the DB-19 connector – nobody makes it anymore, and no surplus electronics store has any in stock. They’re unobtanium, and when you’re making a product built around this connector, you’re going to have a few problems.

Those problems have come to a head over the past year, but getting a few thousand DB-19 connectors manufactured has always seemed just out of reach. It would be a five-figure investment for a very niche product, and [Steve] would have to find someone to make the connectors.

The world’s shortage of DB-19 connectors is no more. After chatting up a few people in the NeXT and Atari communities, [Steve] set up a group buy and manufactured the first batch of DB-19 connectors in recent memory. The world’s supply of DB-19 connectors, all 10,000 of them, is now in [Steve]’s living room.

The process of manufacturing ten thousand DB-19 connectors actually wasn’t that hard for [Steve]. Over the past year, he’s reached out to manufacturers to get a quote, and he still had those numbers in his rolodex. The only problem was finding an engineering drawing of a DB-19 connector and transferring a large amount of money to Hong Kong. The drawing was easy enough, as datasheets sometimes last longer than the parts they describe. Transferring the money over to the manufacturer meant convincing a bank manager there is not a Nigerian prince in Hong Kong and thirty minutes of paperwork.

After a few months, a round of prototyping, and a trip through customs, the world’s supply of DB-19 connectors finally landed on [Steve]’s porch. He still needs to ship them out to the NeXT and Atari folk who participated in the group buy, but the great shortage of DB-19 connectors is over for now.

Hackaday Prize Entry: Dave Thomas’ Desert Dryer

It seemed utter madness — people living in hot desert climates paying to heat air. At least it seemed that way to [David Thomas] before he modified his tumble dryer to take advantage of Arizona’s arid environment.

Hanging the wash out to dry is a time-honored solution, and should be a no-brainer in the desert. But hanging the wash takes a lot of human effort, your laundry comes back stiff, and if there’s a risk of dust storms ruining your laundry, we can see why people run the dryer indoors. But there’s no reason to waste further energy heating up your air-conditioned interior air when hot air is plentiful just a few meters away.

[David]’s modification includes removing the gas heating components of the dryer and adding an in-line filter. He explains it all in a series of videos, which at least for his model, leave no screw unturned. It’s not an expensive modification either, consisting mostly of rigid dryer hose and copious amounts of aluminum duct tape. He mentions the small fire that resulted from failing to remove the gas igniter, so consider yourself warned. The intake filter and box were originally intended for a house air-conditioning system, and required only minimal modifications.

This is a great build, being both cheap and easy to implement as well as being environmentally friendly without requiring a drastic change to [David]’s lifestyle. It makes us wish we had a similar endless supply of hot air.

The HackadayPrize2016 is Sponsored by:

Robot Moth Is Learning To Fly Like A Real Moth

Harvard University has had the flying robot insect market covered for a long time. However, their robot bee, while cool, was starting to bum them out. They wanted to put the battery and brain on the robocritter and have it fly around without a tether. Technology just wasn’t moving fast enough for them, so they’ve picked a different bug, this time a moth.

The Wyss Institute for Biologically Inspired Engineering at Harvard University is known for its Flying Winged Micro Air Vehicles or FWMAV. Which is a pretty good example of what happens when you let engineers name things. This FWMAV, weighs in at a hefty 3grams and has a 16mm wingspan. It also has propulsion, sensors, communication, brains, and power on board. Pretty impressive, the heaviest item is the motor!

The moth can produce 4g of thrust, and they’ve shown it capable of staying aloft once launched with a small catapult. Since they’ve proven that it can at least fly, the next steps are to figure out the dynamics of moth-based flight. Right now it stays pointed in the right direction with a very tiny tail fin like on an airplane. Real moths manage this feat with independent wing control, which the robot doesn’t have yet.

It will be a while before a we’ll see robot moths bumping into our computer monitors a night, stealing our passwords, but it’s a really cool exercise in robot miniaturization.

Continue reading “Robot Moth Is Learning To Fly Like A Real Moth”

Hackaday Links: June 5, 2016

CERN is having a hackathon. It’s in October, yes, but the registration is closing on the 15th of June. They’ve been doing this every year, and the projects that come out of this hackathon are as diverse as infrastructure-less navigation, cosmic ray detectors, and inflatable refrigerators.

Have one of those solder fume extractors? Here’s an obvious improvement. [polyglot] put a strip of LEDs around the frame of his solder fume extractor to put a little more light on the subject.

A few months ago, [Bunnie] started work on a book. It was the Essential Guide to Electronics in Shenzhen. It’s made for hardware hackers to figure out how to buy stuff in Shenzhen, using a neat point-and-understand interface. Those books are now being shipped to people around the globe. I got one, and here’s the mini-review: it’s awesome. Is it a complete travel guide? No, but if you dropped me off at Hong Kong International, I could probably 1) Make it to Shenzhen 2) Buy random LEDs 3) Find a hotel 4) Get a beer 5) Not die. Pics below.

You’re hackers, and that means you’re the people who build stuff for all those ‘makers’ out there. Don’t have an MBA? No problem, [Dave Jones] has your back. He re-did his Economics of Selling Hardware video from several years ago. It’s 25 minutes long, and gives you enough information so you’re not a complete idiot at the business end of design.

Like Raspberry Pis stuffed into things? Here’s a Pi Zero stuffed into a MegaDrive cartridge. Now someone grab a Sonic and Knuckles cart, build a ROM reader, and do a proper cart-reading emulator.

If you’re into R/C, you know about Flite Test. They’re the folks that make crazy, crazy model planes out of Dollar Tree foam board, and have gotten hundreds of people into the hobby. Flite Test is having their own con, Flight Fest, in a little over a month. It’s in Ohio, and from last year’s coverage of the event, it looks like a really cool time.

So, No Man’s Sky is coming out soon. It’s a space game set in a procedurally generated, infinite galaxy. Does anyone have any idea on how to form a Hackaday clan? Somebody should start a Hackaday clan/alliance/thing. I’ll meet you guys at the core.

A Cake Tin Makes A Great Tube Amp Chassis

If you have ever had a go at building a tube-based project you will probably be familiar with the amount of metalwork required to provide support structures for the tubes themselves and the various heavy transformers and large electrolytic capacitors. Electronic construction sixty years ago was as much about building the chassis of a project as it was about building the project itself, and it was thus not uncommon to see creative re-use of a chassis salvaged from another piece of equipment.

This morning we stumbled upon a rather nice solution to some of the metalwork woes facing the tube constructor courtesy of [Bruce], who built his tube audio amplifier on a chassis made from a cake tin and with its transformers housed in decorative display tins.

The circuit itself is a straightforward single-ended design using an ECL82 triode-pentode on each stereo channel, and comes courtesy of [Nitin William]. The power supply is on-board, and uses a pair of silicon diodes rather than another tube as the rectifier.

It’s true that [Bruce] has not entirely escaped metalwork, he’s still had to create the holes for his tubes and various mountings for other components. But a lot of the hard work in making a tube chassis is taken care of with the cake tin design, and the result looks rather professional.

We have something of a personal interest in single-ended tube amplifiers here at Hackaday, as more than one of us have one in our constructional past, present, or immediate futures. They are a great way to dip your toe in the water of tube amplifier design, being fairly simple and easy to make without breaking the bank. We’ve certainly featured our share of tube projects here over the years, for example our “Groove tube” round-up, or our look at some alternative audio amplifiers.