remote control

Hacking Amazon Echo Through Its Remote

This one’s crazy… literally one electronic device is talking to another. In spoken English. And it works.

We’ve covered several hacks for the Amazon Echo, but some might be surprised to learn that there is another piece of interesting hardware that comes along with it – a remote control. Wire in a Raspberry Pi to it, and you’ve given yourself a way to automate control of the Echo without ever taking the Echo itself apart. [Gamaral] did just this and gave his Echo some significantly enhanced capabilities.

He started off by identifying the power rails of the remote. Then he wires in a 3.3v voltage regulator and uses a 100 ohm resistor as a voltage divider to bring it down to the 1.8 volt logic level used by the Echo remote. A single wire runs from the Raspi GPIO to one of the tactile switches on the controller.

For software, the Raspi is running RPi buildroot with Espeak and a cron scheduler compiled in. This allows him to send commands to the Echo which makes it say just about anything he wants. But any voice commands accepted by the Echo should work. If you want to go outside of those boundaries check out the method of spoofing WeMo devices we saw the other day.

Be sure to check out the [gamaral’s] entertaining video below to see the hack in action.

Continue reading “Hacking Amazon Echo Through Its Remote”

Get Your Kicks With This New PIC Development Board

While development boards for micro controllers are nothing ground breaking, they can be expensive, and often times overkill for what you’re doing when they try to put everything you might use … including the kitchen sink. when [Brian] noticed his projects were starting to use Microchip PIC24 more and more, the time came to have a dev board on hand. 

top-viewThe result is a small board with breakouts for USB, UART (via FTDI), of course tons of GPIO pins, and a socket which mates with a daughter board to swap out either a PIC24FJ128GC006, or a DSPIC33EP256MU806, with the potential for more. Also packed on the board is a power regulator system and dual crystals allowing full speed operation or power sipping modes.

Schematics and PCB layout are available (in Diptrace format) along with a board template file to use with MPLAB on github.com. Once you have everything together you will need a PIC programmer, [Brian] is using a trusty Microchip MPLAB ICD 3 programmer, but naturally, others are available.

Microchip recently announced a new development board of their own for the PIC16F series. The Curiosity board has built-in support for programming and debugging (no chipKIT needed). The engineer who designed that board, [John Mouton] is going to join us on July 30th for a live chat about the design process. We’re also going to be giving away some of the first boards to come off the production line… more about that this coming week.

Caption CERN Contest – Smile!

Week 23 of the Caption CERN Contest has been laid to rest. Thanks to all the entrants who stopped by to pay their respects and leave captions for the dearly departed SC-1. CERN engineers and scientists are a crafty bunch, so we’re betting that SC-1’s spirit (and many if its components) lived on in newer CERN projects. We have to thank CERN’s unnamed photographer for capturing these events. It’s always great to see the people and the personalities behind the science.

The Funnies:

  • “After many years of ignoring the pitiful meows, it was finally determined that Schrödinger’s cat was, in fact, dead.” – [Josh Kopel]
  • “We gather here to mourn the deaths of all those brave and noble components that left this world surrounded by magic smoke to reside forever in great the parts bin in the sky.” – [Kid Iccurus]
  • “CERN’s annual Halloween parade was a huge disappointment that year, which was probably due to the fact that they held it in June.” – [DainBramage]

This week’s winner is [Scott Galvin] with “Services were held today for SC-1. SC1’s life ended earlier
this week after a devastating head on collision” Scott describes himself as “Just a visiting Geek with dreams of universal domination”. We’d suggest you start small, [Scott]. Maybe dominating a Bluetooth personal area network with your new LightBlue Bean from The Hackaday Store is just what you need to set your plans in motion!

Week 24

cern-24-smThe scientists at CERN always take a personal stake in their work. Pushing mankind’s knowledge of science and high energy physics takes a special breed of person. Thankfully this special breed always seems to have a fun side as well. Here we see a CERN scientist posing behind a … a device. It looks to be some kind of coil or beam line part, though the actual use is thus far a mystery even to CERN’s own staff. We do know this photo was taken in June of 1973, the same month as one of the longest solar eclipses on record – over 7 minutes of totality! Was this part of some CERN solar experiment? Could it have been a section of a particle accelerator? Was this scientist just working on his latest art project – perhaps part of a dodecagon exploration? You be the judge!

This week’s prize is a Teensy 3.1 from The Hackaday Store. Add your humorous caption as a comment to this project log. Make sure you’re commenting on the contest log, not on the contest itself. As always, if you actually have information about the image or the people in it, let CERN know on the original image discussion page.

Tracking Nearly Every Aircraft With A Raspberry Pi

FlightAware is the premier site for live, real-time tracking of aircraft around the world, and for the last year or so, Raspberry Pi owners have been contributing to the FlightAware network by detecting aircraft flying overhead and sending that data to the FlightAware servers.

Until now, these volunteers have used Raspis and software defined radio modules to listen in on ADS-B messages transmitted from aircraft. With FlightAware’s new update to PiAware, their Raspberry Pi flight tracking software, Mode S transponders can also be detected and added to the FlightAware network.

Last year, FlightAware announced anyone with a Raspberry Pi, a software defined radio module, and an Internet connection would earn a free FlightAware enterprise account for listening to ADS-B transmitters flying overhead and sending that information to the FlightAware servers. ADS-B is a relatively new requirement for aviators that transmits the plane’s identification, GPS coordinates, altitude, and speed to controllers and anyone else who would like to know who’s flying overhead.

Mode S transponders, on the other hand, are older technology that simply transmits the call sign of an aircraft. There’s no GPS information or altitude information transmitted, but through some clever multilateration in the new PiAware release these transponders and planes can now be tracked.

To get the location of these transponders, at least three other PiAware boxes must receive a signal from a Mode S transponder. These signals, along with a timestamp of when they were received are then sent to the FlightAware servers where the location of a transponder can be determined.

The end result of this update is that FlightAware can now track twice as many aircraft around the world, all with a simple software update. It’s one of the most successful applications of crowdsourced software defined radio modules, and if you’d like to get in on the action, the FlightAware team put together a bulk order of ADS-B antennas.

A Bridge Made Of Aircraft Carriers Will Make [William Gibson] Proud

If you’ve ever visited the Puget Sound (the area in and around Seattle, Washington) one thing becomes clear very quickly; It’s not easy to get around when there’s water everywhere. Perhaps that’s why Washington State operates the largest ferry system in all of the U.S., carrying about 23 million passengers each year. It’s not uncommon here to drive (or walk) onto a ferry for a nice boat ride before getting to wherever you need to be.

Another thing the Puget Sound has is naval ship yards. The U.S. Navy has a strong presence here. It’s where many submarines and aircraft carriers come for regular maintenance, as well as decommissioned ships that are stripped of their top secrets parts and nuclear bits. At any given time there can be four or five “slightly used, previously owned” massive aircraft carriers that are that are considered to be in the “reserve fleet” (that is, they can be brought back into service in the case of war.) But usually after a few years pass, and a new carriers are built, the Pentagon will send the floating air field to be dismantled.

Well, someone put two and two together and came up with the idea to use them as a floating bridge – and it’s an interesting hack indeed. Currently the State of Washington is studying the idea, but hasn’t made any firm plans just yet. They have their eye set on a span of water that would need 2-3 aircraft carriers to cover, and that is near the Puget Sound Naval Shipyard. The massive size and over hangs of the ships will still allow for tidal moment, and for local sail boats and pleasure craft to pass between. The hope is that it will be both a traffic solution, and a tourist attraction; not to mention preserving 50 year old ships, that are in many cases, are part of naval history.

We’re not sure if such an idea is practical or not, but our inner Top Gun “Maverick” would love to see such a hack pulled off. And it’s really hard not to make the association with some of the locales imagined in [William Gibson’s] epic work. Will we see the should-be-science-fiction bridge become real? Ooooh how we hope so!

[via dailymail.co.uk]

Arduino And IR Remote Turn Off Raspberry Pi

With all of the cool features on the Raspberry Pi, it is somewhat notable that it lacks a power button. In a simple setup, the only way to cut power to the tiny computer is to physically remove the power cord. [Dalton63841] found that this was below his wife’s tolerance level for electronics, and built a simple remote control for his Raspberry Pi.

[Dalton63841] started this project by trying to use the UART TX pin, but this turned out to be a dead-end. He decided instead to use an Arduino to monitor the 3.3V power rail on the Pi. When the Pi is shut down in software, the Arduino can sense that the Pi isn’t on any more and disconnect the power. The remote control is used to turn the Pi on. The Arduino reads the IR code from a remote and simply powers up the Pi. This is a very simple and elegant solution that requires absolutely no software to be installed on the Raspberry Pi.

We know that this isn’t the most technically complex project we’ve ever featured, but it is a good beginner project for anyone just getting started with a Pi, Arduino, or using IR. Plus, this could be the perfect thing to pair up with a battery-backup Raspberry Pi shutdown device that allows it to power itself down in a controlled way when a power outage is sensed.

Hackaday Prize Entry: Orchestral Invention Defies Convention

Like many of us, [Laurens] likes video game music and bending hardware to his will. Armed with a Printrbot, a couple of floppy drives, and some old HDDs, he built the Unconventional Instrument Orchestra. This 2015 Hackaday Prize contender takes any MIDI file and plays it on stepper and solenoid-based hardware through a Java program.

A while back, [Laurens] won a Fubarino in our contest by using a MIDI keyboard and an Arduino to control the Minecraft environment with Legend of Zelda: Ocarina of Time songs. The Unconventional Instrument Orchestra uses that Fubarino of victory to control the steppers of two floppy drives. He only needed three pins to control the drives—one to enable, one to set the head’s direction, and one to make it step once per pulse.

If ever you’ve been around a 3D printer, you know they make music as a natural side effect. The problem is getting the printer to obey the rests in a piece of music. In order to do this, [Laurens] used his software to control the printer, essentially withholding the next command until the appropriate time in the song.

The percussive elements of this orchestra are provided by a hard drive beating its head against the wall. Since it’s basically impossible to get an HDD to do this as designed (thankfully), [Laurens] replaced the control board with a single transistor to drive the coil that moves the head.

[Laurens] has made several videos of the orchestra in concert, which are a joy all their own. Most of the visual real estate of each video is taken up with a real-time visualization of the music produced by the software. There’s still plenty of room to show the orchestra itself, song-specific gameplay, and a textual commentary crawl in 16-segment displays. Check out the playlist we’ve embedded after the break.

The 2015 Hackaday Prize is sponsored by:

Continue reading “Hackaday Prize Entry: Orchestral Invention Defies Convention”