Arch Reactor Hackerspace Is Moving!

What happens when your hackerspace grows too big for its building? Well — you can either take over the other units in your building — or move to a bigger building altogether!

We toured Arch Reactor almost three years ago, which is located in St. Louis, Missouri. The present facility is 2400sqft, which over the past few years has gotten a bit cramped. They’re moving to a new building at 2215 Scott Avenue, which is over twice the size of the current facility at a whopping 5100sqft!

As you can imagine, it’s not an easy task to move a hackerspace of this size to a new building, but their community is strong and they’re still hacking away, even during the move! If your hackerspace has a move in its not-so-distant-future, you might want to take note and follow along on their blog for some lessons learned.

Continue reading “Arch Reactor Hackerspace Is Moving!”

Hillbilly Lego Focus Puller

There’s almost nothing you can’t build with the right set of Lego parts. [Rigjob] built up a Lego-based wireless remote follow-focus system that’ll give professional systems a run for their money.

Now [Rigjob] self-identifies as a hillbilly, but he’s not just a redneck with a camera. He’s set up the Lego controller to remember minimum and maximum focus positions as well as mark points along the way. The controller simply won’t turn the lens outside of the focus range, and an interactive graph shows you where you are within the range. For a focus wheel, he uses (drum-roll please!) a Lego off-road wheel. It looks really comfortable, usable, and actually quite professional.

There’s a lot of tech in the Lego controller and motors that make this “simple” hack simple. Under the hood, there’s a Bluetooth connection, a geared stepper motor with a position sensor, a communication protocol, and a whole ton of programming in the Lego controller that makes it all drag-and-drop programmable. But to a long-bearded hillbilly cameraman, it all looks like child’s play. And that’s the hallmark of good design. Kudos, Lego.

If you can’t get enough Lego camera tech, check out this DIY slit-scan stargate rig, or (what else?) a Lego 3D chocolate printer.

Continue reading “Hillbilly Lego Focus Puller”

EZ-Spin Motor Spins “Forever”

Now this isn’t a perpetual motion machine, but it’s darn close. What [lasersaber] has done instead is to make the EZ Spin, an incredibly efficient motor that does nothing. Well, nothing except look cool, and influence tons of people to re-build their own versions of it and post them on YouTube.

The motor itself is ridiculously simple: it’s essentially a brushless DC motor with a unique winding pattern. A number of coils — anywhere from six to twenty-four — are wired together with alternating polarity. If one coil is a magnetized north, its two neighbors are magnetized south, and vice-versa. The rotor is a ring with permanent magnets, all arranged so that they have the same polarity. A capacitor is used for the power source, and a reed switch serves as a simplistic commutator, if that’s even the right term.

As the motor turns, a permanent magnet passes by the reed switch and it makes the circuit. All of the electromagnets, which are wound in series, fire and kick the rotor forwards. Then the reed switch opens and the rotor coasts on to the next position. When it gets there the reed switch closes and it gets a magnetic kick again.

The catch? Building the device so that it’s carefully balanced and running on really good (sapphire) bearings, entirely unloaded, and powered with high impedance coils, leads to a current consumption in the microamps. As with most motors, when you spin it by hand, it acts as a generator, giving you a simple way to charge up the capacitor that drives it. In his video [lasersaber] blows on the rotor through a straw to charge up the capacitor, and then lets it run back down. It should run for quite a while on just one spin-up.

The EZ Spin motor is absolutely, positively not perpetual motion or “over-unity” or any of that mumbo-jumbo. It is a cool, simple-to-build generator/motor project that’ll definitely impress your friends and challenge you to see how long you can get it running. Check out [lasersaber]’s website, this forum post, and a 3D model on Thingiverse if you want to make your own.

Continue reading “EZ-Spin Motor Spins “Forever””

Shark With Frickin’ LED Tells People Not To Bother You

Everybody is busy these days, but sometimes it’s hard to tell. What with teleconferences being conducted over tiny Bluetooth headphones and Skype meetings where we seem to be dozing in front of the monitor, we’ve lost some of the visual cues that used to advertise our availability. So why not help your colleagues to know when to give you space with this shark themed WiFi-enabled meeting light?

Why a shark and not a mutated intemperate sea bass? Only [falldeaf] can answer that. But the particulars of the build are well-documented and pretty straightforward. A Photon runs the show, looking for an Outlook VFB file to parse. An RGB LED is used to change the color of the translucent 3D printed shark based on whether you’re in a meeting, about to step into one, or free. The case is 3D printed as well, although [falldeaf] farmed the prints out to a commercial printing outfit because of the size and intricacy of the parts. He did fabricate a nice looking wood base for the light, though.

There are plenty of ways to tell people to buzz off, but this is a pretty slick solution. For those in open floor plan workspaces, something like this IoT traffic light for you and your cube-mates might be in order.

Making A Wooden Multi-Mirror Display Device

Do you have 835 servo motors sitting around? Why not build your own binary wood-pixel-display-device?

Using the same basic concept as a DMD (Digital Micromirror Device) — the heart of all DLP projection technology — an artist created this wooden mirror. It features 835 wood “pixels” which are controlled by servo motors. Each pixel or wood chip can flip 30 degrees down, and 30 degrees up. A series of spot lights shining on the mirror provides lighting so shadows form when the pixels are “off”. The result is quite fascinating.

A small camera mounted in the middle of the display takes a black and white image of whoever (or whatever) is standing in front of the mirror. A bit of image processing later, and the mirror displays what it sees.

Continue reading “Making A Wooden Multi-Mirror Display Device”

32C3: My Robot Will Crush You With Its Soft Delicate Hands!

In his talk at 32C3 [Matthew Borgatti] talked both about his company’s work with NASA toward developing robotic spacesuits and helping people with Cerebral Palsy better control their limbs. What do these two domains have in common? “One-size fits all pneumatic exoskeletons.”

[Matthew] makes a tremendously compelling case for doing something new and difficult in robotics — making robotic systems out of squishy, compliant materials. If you think about it, most robots are hard: made of metal and actuated by motors and gears, cables, or (non-compressible) pneumatic fluid. If you want to build suits that play well with soft and squishy people, they’ll need at least a layer of softness somewhere.

But [Matthew]’s approach is to make everything soft. In the talk, he mentions a few biological systems (octopus arms and goat’s feet) that work exactly because they’re soft. Why soft? Because soft spreads force around automatically and accommodates uneven terrain. And this makes it easier on the people who wear robotic suits and on the designers of the robots who don’t need to worry about the fine detail of the ground they’re walking on.

The talk ended up being very short, but there’s a fantastic Q&A at the end. It’s a must-see. And if you can’t get enough of [Matthew] or squishy robots, we’ve covered his robots before and he even had an entry in the Hackaday Prize.

Truck-Sized Star Destroyer Takes Flight

While some of you may have been to see the new Star Wars movie, you might be sad that everything happened a long time ago in a galaxy far away. But there’s a group of RC enthusiasts called [Flite Test] who are trying to bring at least a little bit of that fantasy into real life. They’ve created a truck-sized Star Destroyer that actually flies. It looks kind of terrifying, too.

While it’s not as big as a “real” Star Destroyer, it’s certainly one of the biggest we’ve ever seen in real life. Built out of foam, this monstrosity is 15 feet long and powered by two huge electric motors and a large lithium polymer battery. Of course they didn’t start out by building this huge flying spaceship; they created a smaller model as proof-of-concept and flew that one around for a while to make sure everything was shipshape. While it’s exciting to see the small model in flight, it’s another thing to see the 15-foot version swooping around.

We’re sad to report that the Star Destroyer did meet a similar fate as the one that Rey was scavenging at the beginning of the movie (spoilers: it crashed), we hope that the RC team rebuilds it so it’s space worthy again. Maybe they can even add a real-life ion drive or a few lasers to make it even more real.

Continue reading “Truck-Sized Star Destroyer Takes Flight”