A Fireside Chat With Grant Imahara

Grant Imahara was on hand at the Hackaday SuperConference for a fireside chat led by Sophi Kravitz and Chris Gammell. You know Grant from his work on the television show MythBusters. He holds a Bachelor’s degree in Electrical Engineering, is known for his work on robots and special effects, he’s the engineer behind the Energizer Bunny, and has even competed on BattleBots. Over the past year he joined with Mouser Electronics to promote engineering through their Empowering Innovation Together campaign. Mouser was one of the sponsors of the 2015 Hackaday Prize and they were happy to work with Grant to make this appearance possible.

Continue reading “A Fireside Chat With Grant Imahara”

Storing Energy In Liquid Form

Researchers in Singapore have created a new kind of redox flow battery with an energy density around ten times higher than conventional redox flow batteries. Never heard of a redox flow battery? These rechargeable batteries have more in common with fuel cells than conventional batteries. They use two circulating liquids separated by a membrane as an electrolyte. Each liquid has its own tank, and you can recharge it by pumping in fresh electrolyte. The redox in the name is short for reduction-oxidation and refers to the process that stores energy in the two liquids. You can learn more about flow batteries in the video from Harvard below.

Continue reading “Storing Energy In Liquid Form”

Because Art: Can Machines Be Creative?

You’re walking through a gallery and stop to take in two seemingly unrelated pieces hanging side-by-side. One of them is a drawing of a bird, rendered with such precision its feathers could easily pop off the paper. The other is a sketch of what seems to be the same bird, however it’s nearly unrecognizable due to inconsistent line quality and parts that are entirely missing.

This article was written for the Omnibus vol #02 Order yours now
This article was written for the Omnibus vol #02
Order yours now

In staring at the photo-real drawing of the perfect bird, you marvel over the technical ability required to produce it. You also study the sloppy sketch just as long, picking out each one of its flaws, yet decide you like the image of the strange bird because the errors are interesting to you.

When you lean forward to read the title card posted on the wall between them, you’re shocked to learn that the two drastically different images were made by the same artist; not the person them self, but a machine they built to create both drawings in two different styles.

As an illustrator, I’m fascinated by drawing machines because their purpose is to emulate an act which has always been a highly personal form of self expression for me. Drawing machines and their creators are in a sense my peers.

Continue reading “Because Art: Can Machines Be Creative?”

Raspberry Pi Zero, Or Minus One?

The Wall Street Journal reported that [Eric Schmidt] of Google and now Alphabet Inc, promoted the idea of an inexpensive version of the Raspberry Pi to the Raspberry Pi foundation’s [Eben Upton]. Apparently [Upton] accepted this recommendation despite existing plans to make a more expensive, more powerful version of the Pi. The outcome is the Raspberry Pi Zero that sells, in some places, for $5.00 and was given away for free on the cover of the MagPi magazine.

From the WSJ article:

“He [Schmidt] said it was very hard to compete with cheap. He made a very compelling case. It was a life-changing conversation,” Mr. Upton said, adding that he went back to the lab and scrapped all the engineering plans for more expensive versions of future Pi computers. “The idea was to make a more powerful thing at the same price, and then make a cheaper thing with the same power.”

Plans were scrapped. The more powerful Pi 2 was released at the price point of existing Pis, and now we have the Zero.

Pi’s Purpose

Foundation Mission

The Raspberry Pi Foundation is a registered educational charity in the UK. The purpose of this Foundation according to their About Us page is to, ‘advance the education of adults and children, particularly in the field of computers, computer science, and related subjects.’

Why is the Raspberry Pi Foundation so concerned about computer education? From the 1990s onward, fewer and fewer A Level students in the UK applying to study Computer Science had previous experience as hobbyist programmers. An applicant in the 2000s usually might have only done a little web design.

Why then does the Raspberry Pi Zero exist? [Upton] also told Cnet, “We really hope this is going to get those last few people in the door and involved in computer programming.”

Very good, but how well does the Zero support this goal or address their concerns?

Continue reading “Raspberry Pi Zero, Or Minus One?”

A Short History Of AI, And Why It’s Heading In The Wrong Direction

Sir Winston Churchill often spoke of World War 2 as the “Wizard War”. Both the Allies and Axis powers were in a race to gain the electronic advantage over each other on the battlefield. Many technologies were born during this time – one of them being the ability to decipher coded messages. The devices that were able to achieve this feat were the precursors to the modern computer. In 1946, the US Military developed the ENIAC, or Electronic Numerical Integrator And Computer. Using over 17,000 vacuum tubes, the ENIAC was a few orders of magnitude faster than all previous electro-mechanical computers. The part that excited many scientists, however, was that it was programmable. It was the notion of a programmable computer that would give rise to the ai_05idea of artificial intelligence (AI).

As time marched forward, computers became smaller and faster. The invention of the transistor semiconductor gave rise to the microprocessor, which accelerated the development of computer programming. AI began to pick up steam, and pundits began to make grand claims of how computer intelligence would soon surpass our own. Programs like ELIZA and Blocks World fascinated the public and certainly gave the perception that when computers became faster, as they surely would in the future, they would be able to think like humans do.

But it soon became clear that this would not be the case. While these and many other AI programs were good at what they did, neither they, or their algorithms were adaptable. They were ‘smart’ at their particular task, and could even be considered intelligent judging from their behavior, but they had no understanding of the task, and didn’t hold a candle to the intellectual capabilities of even a typical lab rat, let alone a human.

Continue reading “A Short History Of AI, And Why It’s Heading In The Wrong Direction”

Listening To The Sounds Of The Earth

A geophone is a specially built microphone for listening to the Earth. [JTAdams] found them at a reasonable price so bought some to play with. A geophone is used to detect vibrations from earthquakes, explosions, rumbling trucks, and vibroseis vehicles. To be useful it needs an amplifier and a recording device to capture the signals.

24

[JTAdams] used a standard amplifier design for an LT1677 op-amp, fed the signal to an MCP3008 A/D converter, and read the output using a Raspberry Pi. A Python script records the data to a CSV file for processing. The Pi worked well because the entire setup needs to be portable to take into the field. Another Python script plots the data which is made available from a web page. A neat simple way of presenting the raw data. [JTAdams] promises more information in the future on post-processing the data. You don’t need a geophone to detect seismic waves if you build your own, but a real ‘phone will be more rugged.

Oh, what’s a vibroseis? It’s a truck with a big flat plate underneath it. The plate is hydraulically lowered to the ground until the weight of the truck is on it. The truck then causes the plate to vibrate, usually sweeping from around 10 hz to 100 hz. This infrasound pass through the ground until it is reflected back by underlying rock layers. A long string of geophones, think 1,000s of feet, detects the waves, which are recorded. In practice, many trucks are used to generate a synchronized signal of sufficient strength. Or, you can set off an explosion which is the technique used in water. Typically the information is used for oil and gas exploration.  A video of one of the trucks in action after the break.

Continue reading “Listening To The Sounds Of The Earth”

Matthias Builds A Belt Sander

[Matthias Wandel] is the preeminent YouTube woodworker, with dozens of machines constructed from wooden gears, amazing machines that produce perfect mortise and tenons, and home-built table saws and jointers. Actually building something instead of buying it is a hallmark of [Matthias]’ channel, and he’s at it again, building his own woodworking machines. This time it’s a 1″ wide belt sander. Of course anyone can go out and simply buy one of these sanders for under $100, but what’s the point in that when you can build one out of plywood and a motor you picked out of the trash?

The design of this belt sander – just like the commercial version he’s improving upon – uses three wheels to guide the 42″ long strip of sandpaper around its course. [Matthias] is using rollerblade wheels for the front wheels. Rollerblade wheels aren’t the best shape for bearings, this can be fixed by using a table saw as a lathe. Yes, [Matthias] lathes with a table saw. He’s just that good.

The rest of the frame was carefully constructed out of plywood and powered by a 1/3 horsepower furnace fan motor pulled from the trash. There are a few interesting features that make this belt sander exceptionally useful: a rounded platen behind the belt makes sanding interior corners very easy, and is something that isn’t usually found on commercial belt sanders.

You can check out [Matthias]’ video below.

Continue reading “Matthias Builds A Belt Sander”