Making An Ultralight Helicopter

Ultralight aviation provides an excellent pathway for those who want to fly, but don’t want to get licensed. These quite often cheap and cheerful DIY aircraft often hide some excellent engineering underneath. This is no more true than in [ultralight helicopter’s] four-year-long helicopter build saga!

While most ultralight builds are fixed-wing, a rotocraft can meet all the legal definitions of ultralight aviation. This helicopter is an excellent example of what’s possible with a lot of time and patience. The construction is largely aluminium with some stainless steel on the skids. A 64-horsepower Rotax 582UL engine powers the two-bladed main rotor and tail rotor. The drivetrain features a multi-belt engine coupler and three gearboxes to ensure correct power output to the two rotors.

Continue reading “Making An Ultralight Helicopter”

GPS And Its Little Modules

Ever want to find your device on the map? Think we all do sometimes. The technology you’ll generally use for that is called Global Positioning System (GPS) – listening to a flock of satellites flying in the orbit, and comparing their chirps to triangulate your position.

The GPS system, built by the United States, was the first to achieve this kind of feat. Since then, new flocks have appeared in the orbit, like the Galileo system from the European Union, GLONASS from Russia, and BeiDou from China. People refer to the concept of global positioning systems and any generic implementation as Global Navigation Satellite System (GNSS), but I’ll call it GPS for the purposes of this article, and most if not all advice here will apply no matter which one you end up relying on. After all, modern GPS modules overwhelmingly support most if not all of these systems!

We’ve had our writers like [Lewin Day] talk in-depth about GPS on our pages before, and we’ve featured a fair few projects showing and shining light on the technology. I’d like to put my own spin on it, and give you a very hands-on introduction to the main way your projects interface with GPS.

Continue reading “GPS And Its Little Modules”

The Sixteen-Year Odyssey To Finally Emulate The Pioneer LaserActive Console

The 1993 Pioneer LaserActive certainly ranks high on the list of obscure video games. It was an odd duck; it used both a LaserDisc for data storage and provided compatibility with a range of existing video game consoles. Due to the rarity and complexity of this system, emulating it has proven to be a challenge. The Ares emulator version 146 is the first to officially add support for the LaserActive. You’d expect getting to that point to be a wild journey. It was, and [Read Only Memo] documented the author’s ([Nemesis]) quest to emulate the odd little machine.

The LaserActive had a brief lifespan, being discontinued in 1996 after about 10,000 units sold. Its gimmick was that in addition to playing regular LaserDiscs and CDs, it could also use expansion modules (called PACs) to support games for other consoles, including the Sega Genesis and the NEC TurboGrafx-16. You could also get PACs for karaoke or to connect to a computer.

By itself, that doesn’t seem too complex, but its LaserDisc-ROM (LD-ROM) format was tough. The Mega LD variation also presented a challenge. The LD-ROMs stored entire games (up to 540 MB) that were unique to the LaserActive. Finding a way to reliably dump the data stored on these LD-ROMs was a major issue. Not to mention figuring out how the PAC communicates with the rest of the LaserActive system. Then there’s the unique port of Myst to the LaserActive, which isn’t a digital game so much as an interactive analog video experience, which made capturing it a complete nightmare.

With that complete, another part of gaming history has finally been preserved and kept playable. Sure, we have plenty of Game Boy emulators. Even tiny computers now are powerful enough to do a good job emulating the systems of yesterday.

A laboratory benchtop is shown. To the left, there is a distillation column above a collecting flask, with a tube leading from the flask to an adapter. The adapter has a frame holding a glass tube with a teflon stopper at one end, into which a smaller glass tube leads. At the other end of the larger tube is a round flask suspended in an oil bath.

Building A Rotary Evaporator For The Home Lab

The rotary evaporator (rotovap) rarely appears outside of well-provisioned chemistry labs. That means that despite being a fundamentally simple device, their cost generally puts them out of reach for amateur chemists. Nevertheless, they make it much more convenient to remove a solvent from a solution, so [Markus Bindhammer] designed and built his own.

Rotary evaporators have two flasks, one containing the solution to be evaporated, and one that collects the condensed solvent vapors. A rotary joint holds the evaporating flask partially immersed in a heated oil bath and connects the flask’s neck to a fixed vapor duct. Solvent vapors leave the first flask, travel through the duct, condense in a condenser, and collect in the second flask. A motor rotates the first flask, which spreads a thin layer of the solution across the flask walls, increasing the surface area and causing the liquid to evaporate more quickly.

Possibly the trickiest part of the apparatus is the rotary joint, which in [Markus]’s implementation is made of a ground-glass joint adapter surrounded by a 3D-printed gear adapter and two ball bearings. A Teflon stopper fits into one end of the adapter, the evaporation flask clips onto the other end, and a glass tube runs through the stopper. The ball bearings allow the adapter to rotate within a frame, the gear enables a motor to drive it, the Teflon stopper serves as a lubricated seal, and the non-rotating glass tube directs the solvent vapors into the condenser.

The flasks, condenser, and adapters were relatively inexpensive commercial glassware, and the frame that held them in place was primarily made of aluminium extrusion, with a few other pieces of miscellaneous hardware. In [Markus]’s test, the rotovap had no trouble evaporating isopropyl alcohol from one flask to the other.

This isn’t [Markus]’s first time turning a complex piece of scientific equipment into an amateur-accessible project, or, for that matter, making simpler equipment. He’s also taken on several major industrial chemistry processes.

phyphox

Smartphone Sensors Unlocked: Turn Your Phone Into A Physics Lab

These days, most of us have a smartphone. They are so commonplace that we rarely stop to consider how amazing they truly are. The open-source project Phyphox has provided easy access to your phone’s sensors for over a decade. We featured it years ago, and the Phyphox team continues to update this versatile application.

Phyphox is designed to use your phone as a sensor for physics experiments, offering a list of prebuilt experiments created by others that you can try yourself. But that’s not all—this app provides access to the many sensors built into your phone. Unlike many applications that access these sensors, Phyphox is open-source, with all its code available on its GitHub page.

The available sensors depend on your smartphone, but you can typically access readings from accelerometers, GPS, gyroscopes, magnetometers, barometers, microphones, cameras, and more. The app includes clever prebuilt experiments, like measuring an elevator’s speed using your phone’s barometer or determining a color’s HSV value with the camera. Beyond phone sensors, the Phyphox team has added support for Arduino BLE devices, enabling you to collect and graph telemetry from your Arduino projects in a centralized hub.

Thanks [Alfius] for sharing this versatile application that unlocks a myriad of uses for your phone’s sensors. You can use a phone for so many things. Really.

Continue reading “Smartphone Sensors Unlocked: Turn Your Phone Into A Physics Lab”

The Saga Of Hacking A Bambu X1 Carbon

Bambu Labs make indisputably excellent printers. However, that excellence comes at the cost of freedom. After a firmware release earlier this year, Bambu printers could only work with Bambu’s own slicer. For [Proper Printing], this was unacceptable, so printer modification was in order. 

First on the plate was the pesky Bambu Labs nozzle. They are a pain to replace, and specialty sizes like 1.8mm are nonexistent. To remedy this flaw, a Bambu Labs compatible heat sink, an E3D V6 ring heater, and a heat break assembly are required. The ring heater was needed for clearance with the stock Bambu shroud. With the help of a 3D-printed jig, fresh holes were cut and tapped into the heat sink to make room for the E3D heat break. Some crimping to salvaged connectors and a bit of filing on the heat sink for wire routing, and Bob’s your uncle!

Continue reading “The Saga Of Hacking A Bambu X1 Carbon”

Hackaday Links Column Banner

Hackaday Links: September 7, 2025

Two weeks ago, it was holographic cops. This week, it’s humanoid robot doctors. Or is it? We’re pretty sure it’s not, as MediBot, supposedly a $10,000 medical robot from Tesla, appears to be completely made up. Aside from the one story we came across, we can’t find any other references to it, which we think would make quite a splash in the media if it were legit. The article also has a notable lack of links and no quotes at all, even the kind that reporters obviously pull from press releases to make it seem like they actually interviewed someone.

Continue reading “Hackaday Links: September 7, 2025”