Neon Lamp Detects Lightning Strikes

For as mysterious, fascinating, and beautiful as lightning is at a distance, it’s not exactly a peaceful phenomenon up close. Not many things are built to withstand millions of volts and tens to hundreds of thousands of amps. Unsurprisingly, there’s a huge amount of effort put into lightning protection systems for equipment and resources that need to be outside where thunderstorms sometimes happen. Although most of us won’t be building personal substations, church steeples, or city-scale water towers in our backyards, we might have a few radio antennas up in the air, so it’s a good idea to have some lightning protection and possibly an alert system like [Joe] built.

Continue reading “Neon Lamp Detects Lightning Strikes”

A photo of the circuitry in its case

GarageMinder: Automatic Garage Door

After getting a new car, [Solo Pilot] missed the automatic garage door opening and closing system their old car had. So they set about building their own, called GarageMinder. On the project page you will find a bill of materials, schematics, and some notes about the approach taken in various versions of the software. [Solo Pilot] also made the software available.

The basic hardware centers around a Raspberry Pi Zero W, but there are plans to switch to an ESP32. From the car side of things there are built-in continuous Bluetooth Low Energy (BLE) advertisement broadcasts, which the Raspberry Pi can detect. Building a reliable system on top of these unreliable signals is difficult and you can read about some of the challenges and approaches that were taken during development. This is a work in progress and additional techniques and approaches are going to be trialed in future.

If you’re interested in Bluetooth garage door openers be sure to read about using a Bluetooth headset as a garage door opener for your Android device.

2025 One-Hertz Challenge: ZX Spectrum Is Now A Z80 Frequency Counter

The ZX Spectrum is perhaps most fondly remembered as a home computer and a games machine. [Tito] has grabbed the faithful black plastic box and turned it into a frequency counter as an innovative entry to our 2025 One Hertz Challenge.

The code was prepared in assembly using ZASM—a Z80 online assembler. It works in quite a simple manner. The code runs for one second at a time, counting rising edges on the EAR port of the ZX Spectrum. Those edges are added up to determine the frequency in question, and the job is done. [Tito] has tested the code and found it’s capable of reading frequencies up to 20 KHz. Since it runs on a one second period, it’s thus eligible for entry by meeting the requirements of the One Hertz Challenge. Code is available on Github for the curious.

The ZX Spectrum has a clock speed of 3.5 MHz, meaning it’s not exactly the tool of choice if you’re reading faster signals. We’ve seen similar done before. In any case, this project was a great way to exercise assembly coding skills and to bust out some classic Speccy hardware—and that’s always a good time. If you’ve got your own retrocomputer hacks brewing up in the lab, don’t hesitate to let us know!

Before Macintosh banner with stylized pixelated picture of one

Before Macintosh: The Story Of The Apple Lisa

Film maker [David Greelish] wrote in to let us know about his recent documentary: Before Macintosh: The Apple Lisa.

The documentary covers the life of the Apple Lisa. It starts with the genesis of the Lisa Project at Apple, covering its creation, then its marketing, and finally its cancellation. It then discusses the Apple Lisa after Apple, when it became a collectible. Finally the film examines the legacy of the Apple Lisa, today.

The Apple Lisa was an important step on the journey to graphical user interfaces which was a paradigm that was shifting in the early 1980s, contemporary with the Macintosh and the work at Palo Alto. The mouse. Bitmapped graphics. Friendly error messages. These were the innovations of the day.

Continue reading “Before Macintosh: The Story Of The Apple Lisa”

A photo of a fully assembled PVCSub.

PVCSub: A Submarine From The Plumbing Aisle

Today in the submersibles department our hacker [Rupin Chheda] wrote in to tell us about their submarine project.

This sub is made from a few lengths of PVC piping of various diameters. There is an inflation system comprised of a solenoid and a pump, and a deflation system, also comprised of a solenoid and a pump. The inflation and deflation systems are used to flood or evacuate the ballast which controls depth. There are three pumps for propulsion and steering, one central pump for propulsion and two side pumps for directional control, allowing for steering through differential thrust. Power and control is external and provided via CAT6 cable.

Continue reading “PVCSub: A Submarine From The Plumbing Aisle”

Close-up view of the Solaria Ultra Grand Complication watch

Time, Stars, And Tides, All On Your Wrist

When asked ‘what makes you tick?’ the engineers at Vacheron Constantin sure know what to answer – and fast, too. Less than a year after last year’s horological kettlebell, the 960g Berkley Grand Complication, a new invention had to be worked out. And so, they delivered. Vacheron Constantin’s Solaria Ultra Grand Complication is more than just the world’s most complicated wristwatch. It’s a fine bit of precision engineering, packed with 41 complications, 13 pending patents, and a real-time star tracker the size of a 2-Euro coin.

Yes, there’s a Westminster chime and a tourbillon, but the real novelty is a dual-sapphire sky chart that lets you track constellations using a split-second chronograph. Start the chrono at dusk, aim your arrow at the stars, and it’ll tell you when a chosen star will appear overhead that night.

Built by a single watchmaker over eight years, the 36mm-wide movement houses 1,521 parts and 204 jewels. Despite the mad complexity, the watch stays wearable at just 45mm wide and 15mm thick, smaller than your average Seamaster. This is a wonder of analog computational mechanics. Just before you think of getting it gifted for Christmas, think twice – rumors are it’ll be quite pricey.

2025 One-Hertz Challenge: HP Logic Probe Brought Into The Future

[Robert Morrison] had an ancient HP 545A logic probe, which was great for debugging SMT projects. The only problem was that being 45 years old, it wasn’t quite up to scratch when it came to debugging today’s faster circuitry. Thus, he hacked it to do better, and entered it in our 2025 One Hertz Challenge to boot!

[Robert’s] hack relied on the classic logic probe for its stout build and form factor, which is still useful even on today’s smaller hardware. Where it was lacking was in dealing with circuits running at 100 MHz and above. To rectify this, [Robert] gave the probe a brain transplant with a Sparkfun Alorium FPGA board and a small display. The FPGA is programmed to count pulses while measuring pulse widths and time, and it then drives the display to show this data to the user. There’s also a UART output, and [Robert] is actively developing further logic analyzer features, too.

You might be questioning how this project fits in the One Hertz Challenge, given it’s specifically built for running at quite high speeds. [Robert] snuck it in under the line because it resamples and updates the display on a once-a-second basis. Remember, as per the challenge site—”For this challenge, we want you to design a device where something happens once per second.” We’re giving you a lot of leeway here!

Often, old scopes and probes and other gear are really well built. Sometimes, it’s worth taking the best of the old physical hardware and combining it with modern upgrades to make something stout that’s still useful today. Meanwhile, if you’re cooking up your own neo-retro-logic probes, don’t hesitate to notify the tipsline!