Neutrino Hunters Hack Chat

Join us on Wednesday, January 17 at noon Pacific for the Neutrino Hunters Hack Chat with Patrick Allison!

It’s a paradox of science that the biggest of equipment is needed to study the smallest of phenomena. The bestiary of subatomic particles often requires the power and dimension of massive accelerators to produce, and caverns crammed with racks full of instruments to monitor their brief but energetic lives. Neutrinos, though, are different. These tiny, nearly massless, neutral particles are abundant in the extreme, zipping through space from sources both natural and artificial and passing through normal matter like it isn’t even there.

That poses a problem: how do you study something that doesn’t interact with the stuff you can make detectors out of? There are tricks that neutrino hunters use, and most of them use very, VERY big instruments to do it. Think enormous tanks of ultrapure water or a cubic kilometer of Antarctic ice, filled with photomultiplier tubes to watch for the slightest glimmer of Cherenkov radiation as a neutrino passes by.

join-hack-chatNeutrino hunting is some of the biggest of Big Science, and getting all the parts to work together takes some special engineering. Patrick Allison has been in the neutrino business for decades, both as a physicist and as the designated guru who keeps all the electronics humming. He’ll join us on the Hack Chat to talk about the neutrino hunting trade, and what it takes to keep the data flowing.

Our Hack Chats are live community events in the Hackaday.io Hack Chat group messaging. This week we’ll be sitting down on Wednesday, January 17 at 12:00 PM Pacific time. If time zones have you tied up, we have a handy time zone converter.

Featured image: Daderot, CC0, via Wikimedia Commons

Haiku OS: The Open Source BeOS You Can Daily Drive In 2024

Haiku is one of those open source operating systems that seem to be both exceedingly well-known while flying completely under the radar. Part of this is probably due to it being an open source version and continuation of the Be Operating System (BeOS). Despite its strong feature set in the 1990s, BeOS never got much love in the wider computer market. Nevertheless, it has a strong community that after twenty-two years of development has now reached a point where you can daily drive it, according to the [Action Retro] channel on YouTube.

One point where Haiku definitely scores points is with the super-fast installation and boot. [Action Retro] demonstrates this on real hardware, and we can confirm that it boots very fast in VirtualBox on a low-end Intel N100-based host system as well. With the recently introduced QtWebEngine-based Falkon browser (formerly known as QupZilla) even JavaScript-heavy sites like YouTube and retro Mac emulators work well. You can even get a Minecraft client for Haiku.

Although [Action Retro] notes that 3D acceleration is still a work-in-progress for Haiku, his 2014-era AMD system smoothly played back 1080p YouTube videos. Although not addressed in the video, Haiku is relatively easy to port existing software to, as it is POSIX-compatible. There is a relatively modern GCC 11.2 compiler in the Beta 4 release from 2022, backed up by solid API documentation. Who doesn’t want to take a poke at a modern take on the OS that nearly became MacOS?

Continue reading “Haiku OS: The Open Source BeOS You Can Daily Drive In 2024”

Solar Chimneys: Viable Energy Solution Or A Lot Of Hot Air?

We think of the power we generate as coming from all these different kinds of sources. Oil, gas, coal, nuclear, wind… so varied! And yet they all fundamentally come down to moving a gas through a turbine to actually spin up a generator and make some juice. Even some solar plants worked this way, using the sun’s energy to heat water into steam to spin some blades and keep the lights on.

A solar updraft tower works along these basic principles, too, but in a rather unique configuration. It’s not since the dawn of the Industrial Age that humanity went around building lots of big chimneys, and if this technology makes good sense, we could be due again. Let’s find out how it works and if it’s worth all the bluster, or if it’s just a bunch of hot air.

Continue reading “Solar Chimneys: Viable Energy Solution Or A Lot Of Hot Air?”

Vroomba Gets Upgrades And A Spoiler

[Electrosync] is the creator and driver of the world’s fastest robotic vaccum cleaner, the Vroomba. It’s a heavily modified roomba capable of speeds of around 60 kph, well beyond the pedaling speed of most bicyclists. Despite being rejected by Guinness for a world record, we’re fairly confident that no other vacuum cleaners have gotten up to these speeds since the Vroomba first hit the streets. That’s not going to stop [electrosync] from trying to top his own record, though, and he’s brought the Vroomba some much needed upgrades.

The first, and perhaps most important, upgrades are to some of the structural components and wheels. The robot is much heavier than comparable RC vehicles and is under much greater strain than typical parts are meant to endure, so he’s 3D printed some parts of the chassis and some new wheels using a nylon-carbon fiber filament for improved strength. The wheels get a custom polyurethane coating similar to last time.

Continue reading “Vroomba Gets Upgrades And A Spoiler”

Remembering ISDN

We are definitely spoiled these days in terms of Internet access. In much of the world gigabit speeds are common and even cheap plans are likely to be measured in 100s of megabits. But there was a time not long ago when a fast modem received at 56 kilobits per second. If you couldn’t justify a dedicated T1 line and you had a lot of money, you might have thought about ISDN – the Integrated Services Digital Network. [Tedium] has a great retrospective now that the UK has decided to sunset ISDN in 2025. ISDN started in the UK in the mid-1980s.

ISDN offered two 64-kilobit channels that could be bonded to reach 128 kilobits. There was also a slower third channel for commands and signaling (although you could use it for data, too, using an X.25-like protocol). If you wanted phone service, your voice was on one 64K channel and the data on the other. No need to tie up your phone just to get online. Voice was digitized at 8 kHz with 8 bits of G.711 encoding.

Continue reading “Remembering ISDN”

Simulating A Time-Keeping Radio Signal

As far as timekeeping goes, there’s nothing more accurate and precise than an atomic clock. Unfortunately, we can’t all have blocks of cesium in our basements, so various agencies around the world have maintained radio stations which, combined with an on-site atomic clock, send out timekeeping signals over the air. In the United States, this is the WWVB station located in Colorado which is generally receivable anywhere in the US but can be hard to hear on the East Coast. That’s why [JonMackey], who lives in northern New Hampshire, built this WWVB simulator.

Normally, clocks built to synchronize with the WWVB station include a small radio antenna to receive the 60 kHz signal and the 1-bit-per-second data transmission which is then decoded and used to update the time shown on the clock. Most of these clocks have internal (but much less precise) timekeeping circuitry to keep themselves going if they lose this signal, but [JonMackey] can go several days without his clocks hearing it. To make up for that he built a small transmitter that generates the proper timekeeping code for his clocks. The system is based on an STM32 which receives its time from GPS and broadcasts it on the correct frequency so that these clocks can get updates.

The small radio transmitter is built using one of the pins on the STM32 using PWM to get its frequency exactly at 60 kHz, which then can have the data modulated onto it. The radiating area is much less than a meter, so this isn’t likely to upset any neighbors, NIST, or the FCC, and the clocks need to be right beside it to update. Part of the reason why range is so limited is that very low frequency (VLF) radios typically require enormous antennas to be useful, so if you want to listen to more than timekeeping standards you’ll need a little bit of gear.

Bringing The Voice Assistant Home

For many, the voice assistants are helpful listeners. Just shout to the void, and a timer will be set, or Led Zepplin will start playing. For some, the lack of flexibility and reliance on cloud services is a severe drawback. [John Karabudak] is one of those people, and he runs his own voice assistant with an LLM (large language model) brain.

In the mid-2010’s, it seemed like voice assistants would take over the world, and all interfaces were going to NLP (natural language processing). Cracks started to show as these assistants ran into the limits of what NLP could reasonably handle. However, LLMs have breathed some new life into the idea as they can easily handle much more complex ideas and commands. However, running one locally is easier said than done.

A firewall with some muscle (Protectli Vault VP2420) runs a VLAN and NIPS to expose the service to the wider internet. For actually running the LLM, two RTX 4060 Ti cards provide the large VRAM needed to load a decent-sized model at a cheap price point. The AI engine (vLLM) supports dozens of models, but [John] chose a quantized version of Mixtral to fit in the 32GB of VRAM he had available.

Continue reading “Bringing The Voice Assistant Home”