Building (And Testing) A DIY Air Purifier

Whether it’s the usual pollution of the city, or the fact that your corner of the globe happens to be on fire currently, poor air quality is a part of daily life for many people. One way of combating this issue is with a high quality HEPA filter in your home, but unfortunately that’s not something that everyone can afford to even has access to.

Which is why [Adam Kelly] decided to design this DIY HEPA air purifier that can be built for less than $100. That might still sound like a lot of money, but compared to the $500 sticker price he was seeing for the models recommended by health officials, it’s certainly a step in the right direction. Of course, it’s only a deal if it actually works, so a big part of the project has also been verifying the design’s ability to filter particles out of the air in a timely manner.

To build his purifier, [Adam] found a HEPA H13 rated replacement filter that was cheap and readily available, and started designing a low-cost way to pulling air through it. He eventually went with a 120 mm computer case fan coupled with a step-up converter that can produce 12 V from a standard USB port. Then he just needed to design a 3D printed “lid” which would position the fan so it draws air through the center of the filter.

In terms of testing, [Adam] wasn’t worried about the purifier’s ability to actually filter out smoke particles; unless the manufacturer lied about the capabilities of the filter itself, that part is a given. But he was curious about how effective the fan would be in terms of circulating air through a room.

By installing a pitot tube from one of his drones into the lid of the purifier, he determined the airflow in the center of the filter to be approximately 160 CFM. By his calculations, that means it should be able to circulate all the air in his 25 cubic meter office around 10 times per hour. That’s a promising start, but [Adam] says he’d still be interested in a more detailed analysis of the design’s performance by anyone who might have the equipment to do so.

As he lives in Australia, this project is more than just a passing fancy for [Adam]. He only has to look out the window to see that the air he’s breathing is filled with smoke from the raging bushfires. They say that necessity is the mother of invention, and breathable air is pretty high up on the list of human necessities. Our hat’s off to anyone who sees their fellow citizens suffering and tries to use their skills to come up with a solution.

Failed: Air Umbrella

About five years ago, a Kickstarter popped up for the air umbrella. It wasn’t long before the project fell apart and the company made at least some refunds. Old news, we know. But [The Action Lab] recently explored the physics behind the air umbrella and why it wouldn’t be very practical. (Video, embedded below.)

Notice we said not very practical, not unworkable. It is possible to shoot rain away from you by using pressurized air. The problem is you need a lot of air pressure. That means you also need a lot of battery. In particular, [The Action Lab] used a leaf blower and even with that velocity, there was only minimal water deflection. In other words, you are still going to get wet.

Continue reading “Failed: Air Umbrella”

A Simple Science Fair AM Transmitter

A crystal radio is a common enough science fair project, but the problem is, there isn’t much on anymore. The answer is, of course, obvious: build your own AM transmitter, too. AM modulation isn’t that hard to do and [Science Buddies] has plans for how to build one with a canned oscillator and an audio transformer.

We don’t imagine the quality of this would be so good, but for a kid’s science project it might be worth a shot. Maybe something like “What kind of materials block radio waves?” would be a good project statement.

Continue reading “A Simple Science Fair AM Transmitter”

A Pair Of CRTs Drive This Virtual Reality Headset

With the benefit of decades of advances in miniaturization, looking back at the devices of yore can be entertaining. Take camcorders; did we really walk around with these massive devices resting on our shoulders just to record the family trip to Disneyworld? We did, but even if those days are long gone, the hardware remains for the picking in closets and at thrift stores.

Those camcorders can be turned into cool things such as this CRT-based virtual reality headset. [Andy West] removed the viewfinders from a pair of defunct Panasonic camcorders from slightly after the “Reggievision” era, leaving their housings and optics as intact as possible. He reverse-engineered the connections and hooked up the composite video inputs to HDMI-to-composite converters, which connect to the dual HDMI ports on a Raspberry Pi 4. An LM303DLHC accelerometer provides head tracking, and everything is mounted to a bodged headset designed to use a phone for VR. The final build is surprisingly neat for the number of thick cables and large components used, and it bears a passing resemblance to one of those targeting helmets attack helicopter pilots use.

The software is an amalgam of whatever works – Three.js for browser-based 3D animation, some off-the-shelf drivers for the accelerometers, and Python and shell scripts to glue it all together. The video below shows the build and a demo; we don’t get the benefit of seeing what [Andy] is seeing in glorious monochrome SD, but he seems suitably impressed. As are we.

We’ve seen an uptick in projects using CRT viewfinders lately, including this tiny vector display. Time to scour those thrift stores before all the old camcorders are snapped up.

Continue reading “A Pair Of CRTs Drive This Virtual Reality Headset”

How Efficient Can An Airplane Be? The Celera 500L Sets To Find Out

One of the current hype trends is the supposedly imminent revolution in air transport. So many companies showing digital renderings and mockups to illustrate their own utopic vision for the future, reaching fevered pitch at events like CES 2020. But aviation has a long history of machinery that turned out to be impractical. Wouldn’t it be great if a company focused their resources on building real aircraft and get real data before cranking up their hype machine? The people at Otto Aviation thought so, and their Celera 500L has reportedly taken to the skies.

If you said “Otto who?” you are not alone. The company has zero PR activity to speak of. Limited internet attention started from aviation fans spotting the Celera 500L under construction at its Southern California airfield. Its unusual exterior appearance and proximity to Hollywood made some dismiss it at first as a movie prop. Anyone with a passing interest in aerospace engineering could immediately see aerodynamics was a priority in this design, its long thin unswept glider-like wings implies the goal is fuel efficiency rather than speed. This was confirmed by internet sleuths uncovering patents filed by people associated with the company.

The patents include very lofty fuel efficiency goals, and industry veterans are skeptical. Fuel is a huge factor in aircraft operating costs where small increases in efficiency translate to big dollars over a plane’s lifetime. It’s hard to believe every other plane maker would deliberately leave so much on the table. There must be far more to the 500L inside that teardrop shaped body, with innovations and potentially making some trade-offs no other company has made. We can see two of them from the outside: the 500L traded off some pilot visibility for aerodynamics, and it has very little ground clearance to absorb the impact of less-than-ideal landings.

It’s certainly possible the ideas leading to this plane will fail to pan out in reality like so many ideas before them. Aerospace engineering is a field littered with debris of concepts that looked great on paper but crashed against a hard and unforgiving reality. But at least Otto Aviation is trying something new by building real hardware to get real data, something well worth recognizing in a sea of hyped up fantasy renderings.

[Photo via SoCal Airshow Review]

See If Today’s Air Quality Will Conch You Out

Air quality is one of those problems that is rather invisible and hard to grasp until it gets bad enough to be undeniable. By then, it may be too late to do much about it. But if more people were interested in the problem enough to monitor the air around them, there would be more innovators bringing more ideas to the table. And more attention to a problem usually means more accountability and eventual action.

This solar-powered particulate analyzer made by [rabbitcreek] is a friendly way to take the problem out of the stratosphere of ‘someday’ and bring it down to the average person’s backyard. Its modular nature makes it fairly simple to build, and the conch shell enclosure gives it a natural look. That shell also cleverly hides the electronics, while at the same time allowing air and particulates to reach the sensor. If you don’t like the shell enclosure, we think the right type of bird feeder could protect the electronics while allowing airflow.

[rabbitcreek] attached a sizeable solar panel to the shell on a GoPro mount so it can be adjusted to face the sun. The panel charges a Li-Po battery that gets boosted to 5V. Every two hours, a low-power breakout circuit wakes up the Feather ESP32 and takes a reading from the particulate sensor. [rabbitcreek] can easily see the data on his phone thanks to the Blynk app he created.

Why limit this to your yard? Bare ESP32s are cheap enough that it’s feasible to build a whole network of air quality sensors.

Get Compressed Air From Falling Water With The Trompe

If you’re like us, understanding the processes and methods of the early Industrial Revolution involved some hand waving. Take the blast furnace, which relies on a steady supply of compressed air to stoke the fire and supply the oxygen needed to smelt iron from ore. How exactly was air compressed before electricity? We assumed it would have been from a set of bellows powered by a water wheel, and of course that method was used, but it turns out there’s another way to get compressed air from water: the trompe.

As [Grady] from Practical Engineering explains in the short video below, the trompe was a clever device used to create a steady supply of high-pressure compressed air. To demonstrate the process, he breaks out his seemingly inexhaustible supply of clear acrylic piping to build a small trompe. The idea is to use water falling around a series of tubes to create a partial vacuum and entrain air bubbles. The bubbles are pulled down a vertical tube by the turbulence of the water, and then enter a horizontal section where the flow evens out. The bubbles rise to the top of the horizontal tube where they are tapped off by another vertical tube, as the degassed water continues into a second vertical section, the height of which determines the pressure of the stored air. It’s ingenious, requiring no power and no moving parts, and scales up well – [Grady] relates a story about one trompe that provided compressed air commercially for mines in Canada.

Need an electricity-free way to pump water instead of air? Check out this hydraulic ram pump that takes its power from the water it pumps.

Continue reading “Get Compressed Air From Falling Water With The Trompe”