LEGO Microtonal Guitar: Building Blocks Of Music Theory

Is there anything LEGO can’t do, aside from turning to a soft gelatin when a human steps on one? The incredible range of piece sizes that make them such versatile building blocks extends their utility far beyond the playroom floor, as [Tolgahan Çoĝulu] demonstrates with his LEGO microtonal guitar.

His LEGO what now? If you’re in the western world, microtones simply refer to those that fall between the 12 semitones-per-octave shackles of the western scale. Microtones are smaller than semitones, so they can bring a richer flavor to music, as evidenced in eastern cultures. In the past, [Tolgahan] has made microtonal guitars with fixed and adjustable frets using standard fret wire. After his young son copied his design in LEGO, he decided to bring it to life.

[Tolgahan] and a friend designed and printed a compatible base plate fingerboard and glued it in place on an old classical guitar. Then he and his son spent hours digging through their hoard to look for 1x1s and other 1x pieces to build up the fingerboard.

Here’s where it gets really interesting — they printed a ton of special 1×1 pieces to build up the moveable frets. Since they’re 1x1s, they can also be used to teach music simply by moving them around to the notes of the scale or song being taught, no matter the hemisphere it comes from. Pluck your way past the break to watch the story play out and hear this LEGO guitar for yourself.

If [Tolgahan] and his son had used machine learning to sort their LEGO, it probably wouldn’t have taken so long to find all those 1x1s.

Continue reading “LEGO Microtonal Guitar: Building Blocks Of Music Theory”

3D Print Your 3D Scanner

[QLRO] wanted a 3D scanner, but didn’t like any of the existing designs. Some were too complex. Some were simple but required you to do things by hand. That led to him designing his own that he calls AAScan. You can see the thing operating in the video below.

In general, you can move the camera around the object or you can move the object around while the camera stays fixed. This design chooses the latter. You’ll need a stepper motor with a driver board and an Arduino to make the turntable rotate. You also need a computer running Python and Meshroom. The phone also has to run Python and [QLRO] used QPython on an Android device.

Continue reading “3D Print Your 3D Scanner”

MakerBot Targets Schools With Rebranded Printers

MakerBot was poised to be one of the greatest success stories of the open source hardware movement. Founded on the shared knowledge of the RepRap community, they created the first practical desktop 3D printer aimed at consumers over a decade ago. But today, after being bought out by Stratasys and abandoning their open source roots, the company is all but completely absent in the market they helped to create. Cheaper and better printers, some of which built on that same RepRap lineage, have completely taken over in the consumer space; forcing MakerBot to refocus their efforts on professional and educational customers.

This fundamental restructuring of the company is perhaps nowhere more evident than in the recent unveiling of “SKETCH Classroom”: an $1,800 package that includes lesson plans, a teacher certification program, several rolls of filament, and two of the company’s new SKETCH printers. It even includes access to MakerBot Cloud, a new online service that aims to help teachers juggle student’s print jobs between multiple SKETCH printers.

Of course, the biggest takeaway from this announcement for the average Hackaday reader is that MakerBot is releasing new hardware. Their last printer was clearly not designed (or priced) for makers, and even a current-generation Replicator costs more than the entire SKETCH Classroom package. On the surface, it might seem like this is a return to a more reasonable pricing model for MakeBot’s products; something that could even help them regain some of the market share they’ve lost over the years.

There’s only one problem, MakerBot didn’t actually make the SKETCH. This once industry-leading company has now come full-circle, and is using a rebranded printer as the keystone of their push into the educational market. Whether they were unable to build a printer cheap enough to appeal to schools or simply didn’t want to, the message is clear: if you can’t beat them, join them.

Continue reading “MakerBot Targets Schools With Rebranded Printers”

Everything You Wanted To Know About 3D Printing Support But Were Afraid To Ask

At the dawn of 3D printing, support structures were something to avoid. ABS is a hard substance to clear off, and the slicers did a comparatively poor job of making structures that were easy to remove. Today, supports are not a big deal and most of the slicers and materials allow for high-quality prints with supports. We were printing something with supports the other day and noticed that Cura has a support floor and roof function. Curious, we did a quick search and found this very comprehensive post about the current state of support.

With 25 topics in the table of contents, this isn’t a 3-minute read. Of course, you might wish to skip over some of the first parts if you get why you need support and understand the basic ideas. We became more interested when we reached the geometry section.

Continue reading “Everything You Wanted To Know About 3D Printing Support But Were Afraid To Ask”

What Does Your Necklace Say?

If we write about sound reproduction, there is a good chance we found a home-made amplifier or an upcycled speaker system. In this case, you don’t use your ears to appreciate the sound; you use your hands or eyes. [ElatisEagles] converted an amplitude sound graph into a wearable bead. Even without much background it should be immediately recognizable for what it is. Presumably, they converted a sound wave to vectors, then used the “Revolve” function in Rhino, their software of choice. Sometimes this is called a “lathe” function. Resin printers should be able to build these without supports and with incredible fidelity.

Some tattoos put a sound wave on the skin, and use an app to play it back, but if you want to wear a sound bite from your favorite show and not get branded as the “Pickle Rick” gal/guy at the office, maybe swap out the color and sound wave before it goes stale. We would wear a bead that says, “drop a link in our tip line,” but you can probably think of something more clever.

We have other high-tech ornamentation that leverages motion instead of sound, or how about a necklace that listens instead.

Continue reading “What Does Your Necklace Say?”

Bubbly Filament Works Better Than You Think

Normally bubbles appearing in your extruded filament would be considered a bad sign, but it turns out you can now buy filament that has been specifically formulated to foam. [Stefan] from CNC Kitchen has doing some experiments with these bubbly filaments, and the results have been very interesting.

The filaments in question are VARIOSHORE TPU and LW-PLA, both by ColorFabb. Both filaments have a blowing agent added to the formulation, which releases gas as the temperature is increased. This causes bubbles to form, creating a cellular structure, which decreases the density and increases the flexibility of the printed part. This isn’t the first time that foaming is sold as a feature, but previously it was only done for aesthetic purposes in Polymaker’s Polywood filament.

Before putting the materials through his excellent test procedures, [Stefan] first goes through the process of tuning the print settings. This can be tricky because of the foaming, which increases the effective volume of the plastic, requiring careful adjustment of the extrusion rate. Foaming in the PLA filament reached its maximum foaming at 250 C, at which its density was 44% of the unfoamed filament.

In testing the physical properties, [Stefan] found that the tensile strength and stiffness of printed parts are reduced as foaming increases, but the impact strength is improved. He concludes that the lightweight PLA can have some interesting applications because of the reduced weight and increased impact strength, with 3D printed RC aircraft being an excellent example of this. It should also be possible to change the between layers, effectively sandwiching the foamed layers between solid skins.

[Stefan]’s videos are an excellent resource for those looking to master the finer points of 3D printing with different materials. He has reinforced prints with carbon fiber, played with extrusion widths and developed an ingenious gradient infill technique.

Continue reading “Bubbly Filament Works Better Than You Think”

3D Printing Skin Or Maybe A Dermal Regenerator

In space — at least on Star Trek — no one can hear you apply a band-aid. That’s too low tech. When a Star Fleet officer gets an ouchie, the real or holographic doctor waves a dermal regenerator over the afflicted area, and new skin magically appears. Science fiction, huh? Maybe not. A group of scientists from Canada recently published a paper on a handheld instrument for depositing “skin precursor sheets” over full-thickness burns. The paper is behind a paywall and if you don’t know how to get it or don’t want to get it, you can see a video from the University of Toronto, below.

Although they use the term 3D printing, the device is more like a paint roller. Several substances merge together in the print head and lay down on the burn in broad stripes.

Continue reading “3D Printing Skin Or Maybe A Dermal Regenerator”